Facebook Like
Add link

"dddz" - 6 õppematerjali

4
doc

Matemaatiline analüüs

Muutuja vahetus kahekordses integraalis x = x(u; v) f ( x, y )dxdy 1)need on ühesed; 2)võrrandisüst. On üheselt avaldatav u ja v suhtes; 3)f-nid y = y(u; v) D peavad olema pidevad; 4)peavad olema pidevad osatuletised mõlema muutuja järgi. (joon) f ( x; y ) = f [ x (u; v ); y (u; v...

Matemaatiline analüüs - Tallinna Tehnikaülikool
335 allalaadimist
16
doc

Kordamisküsimused - vastused

Mitme muutujaga funktsiooni mõiste m-muutuja funktsiooniks nimetatakse kujutist, mis seab suuruse P igale väärtusele tema muutumispiirkonnast D vastavusse suuruse z ühe kindla väärtuse Mitmemuutuja funktsioon graafik Funktsiooni z=f(x1,x2,...,xm), määramispiirkonnaga D, graafikuks nimetatakse järgmist ruumi Rm+1 alamhulka ={(x1,x2,...,xm,f...

Matemaatiline analüüs 2 - Tallinna Tehnikaülikool
500 allalaadimist
3
doc

Mat analüüs 2

M . u1+u2+u3+...+un+..., (1) v1+v2+v3+ i =1 N. , - X(x,y) Y(x,y) ...+vn+... (2) . f ( x, y, z )dxdydz = F V (, , z ) dddz D. V , M N . (1) . (2), .. u nvn (n=1,2,...

Matemaatiline analüüs 2 - Tallinna Tehnikaülikool
134 allalaadimist
14
pdf

Matemaatiline analüüs II

xn ja nende järjestatud jada (x1...xn)(-punkt) ­ seda nim n- mõõtmelise ruumi punktiks. Rn={(x1,...,xn) | xi R, i=1,...,n}, P(x1,...,xn) ­ punkt koordinaatidega xi n=1: R1={P(x1) | x1 R} geom. sirge n=2: R2={P(x1,x2) | x1,x2 R} geom. tasand n=3: R3={P(x1,x2,x3) | x1,x2,x3 R} geom. ruum Punkt A on piirkonna D sisepunkt, sel korral kui ta...

Matemaatiline analüüs 2 - Eesti Maaülikool
318 allalaadimist
4
pdf

Matemaatiline analüüs II, II teooriaküsimused 2013

Kahekordne integraal (integraalsumma, kahekordse integraali definitsioon, kahekordse integraali omadused (vastavad teoreemid tõestuseta)). n Moodustame summa: Vn = f ( P1 )s1 + f ( P2 )s 2 + ... + f ( Pn )s n = f ( Pi )s i...

Matemaatiline analüüs II - Tartu Ülikool
145 allalaadimist
5
doc

Matemaatilise analüüsi 2.kollokviumi

Mitmemuutuja funktsiooni piirväärtuse definitsioon. Pideva mitmemuutuja Kui funktsiooni z=f(x,y) on diferentseeruv kohal (x,y), siis funktsioon f on pidev sellel kohal. funktsiooni definitsioon. Kahemuutuja funktsiooni pidevuse geomeetriline sisu. Funktsioon z=f(x,y) on...

Matemaatiline analüüs 2 - Tallinna Tehnikaülikool
24 allalaadimist


Registreeri ja saadame uutele kasutajatele
faili e-mailile TASUTA

Konto olemas? Logi sisse

Faili allalaadimiseks, pead sisse logima
või
Kasutajanimi / Email
Parool

Unustasid parooli? | Tee tasuta konto

Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun