Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge
Add link

Kategooria analüütiline geomeetria - 3 õppematerjali

Matemaatika >> Analüütiline geomeetria
analüütiline geomeetria on matemaatika haru, mis uurib geomeetria objekte algebra vahenditega, kasutades koordinaatide meetodit.
10
doc

Analüütilise geomeetria valemid

Vektori koordinaadid a = Xi +Yj + Zk = ( X ; Y ; Z ) 2. Vektori koordinaatide seos lõpp- ja alguspunktide koordinaatidega AB = ( x B ­ x A ; y B ­ y A ; z B ­ z A ) 3. Vektori pikkus a = X +Y +Z 2 2 2 X Y Z cos = ; cos = ; cos = 4. Vektori suuna koosinused a a a cos 2 + cos 2 + cos 2 = 1 5. Vektorite võrdsus a = b, ( X 1 = X 2 ; Y1 = Y2 ; Z 1 = Z 2 ) 6. Vektorite summa c = a + b, ( X 3 = X 1 + X 2 ; Y3 = Y1 + Y2 ; Z 3 = Z 1 + Z 2 ) 7. Vektori korrutamine skalaariga b = na, ( X 2 = nX 1 ; Y2 = nY1 ; Z 2 = nZ1 ) X 1 Y1 Z...

Analüütiline geomeetria - Eesti Mereakadeemia
135 allalaadimist
10
doc

Analüütilise geomeetria valemid

Vektori koordinaadid a = Xi +Yj + Zk = ( X ; Y ; Z ) 2. Vektori koordinaatide seos lõpp- ja alguspunktide koordinaatidega AB = ( x B ­ x A ; y B ­ y A ; z B ­ z A ) 3. Vektori pikkus a = X +Y +Z 2 2 2 X Y Z cos = ; cos = ; cos = 4. Vektori suuna koosinused a a a cos 2 + cos 2 + cos 2 = 1 5. Vektorite võrdsus a = b, ( X 1 = X 2 ; Y1 = Y2 ; Z 1 = Z 2 ) 6. Vektorite summa c = a + b, ( X 3 = X 1 + X 2 ; Y3 = Y1 + Y2 ; Z 3 = Z 1 + Z 2 ) 7. Vektori korrutamine skalaariga b = na, ( X 2 = nX 1 ; Y2 = nY1 ; Z 2 = nZ1 ) X 1 Y1 Z...

Analüütiline geomeetria -
39 allalaadimist
16
pdf

Algoritmid

Algoritm. Algoritmi omadused. Keerukus. Ajalise keerukuse asümptoodiline hinnang. Erinevad keerukusklassid. Algoritm on mingi meetod probleemi lahendamiseks, mida saab realiseerida arvutiprogrammi abil. Algoritm peab olema määratud nii täpselt, et seda suudaks täita isegi arvuti. Täidetavaid samme ei tohi olla liiga palju. Algoritm peab lahendama ülesande õigesti erinevate sisendandmete korral. Algoritmi 5 olulist omadust: 1. Lõplikkus. Algoritmi töö peab lõppema peale lõpliku arvu sammude läbimist. 2. Määratletus. Algoritmi iga samm peab olema rangelt ja ühemõtteliselt määratud iga juhu jaoks. 3. Sisend. Algoritmil on sisendandmed, mille hulk võib olla null. 4. Väljund. Algoritmil on vastus(ed), millel on täpselt määratud seos sisendandmetega. 5. Efektiivsus (tulemuslikkus). Algoritm peab olema nii lihtne, et on lõpliku ajavahe...

Analüütiline geomeetria - Eesti Mereakadeemia
26 allalaadimist


Registreeri ja saadame uutele kasutajatele
faili e-mailile TASUTA

Konto olemas? Logi sisse

Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun