Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

Tuumaelektrijaam - sarnased materjalid

reaktor, uraan, neutron, elektrijaam, kütus, tuumaelektrijaam, tuumaelektrijaama, tuumaelektrijaamad, reaktorit, tuumaenergia, tuumaelektrijaamade, tuumareaktor, tuumajaam, vesinik, prooton, reaktoris, uraanituum, reaktorid, ahelreaktsioon, elektrienergia, tuumareaktsioon, pomm, keskkonnamõjud, tuumajaamad, tuumkütus, tuumareaktsiooni, tuumasüntees
thumbnail
5
docx

Tuumaelektrijaam, aatomi tuuma lõhustumine

Referaat Tuumaelektrijaam ******* 10R2 ********* 2012 Tuumaelektrijaam Tuumaelektrijaam on elektrijaam, kus elektrienergiat saadakse aatomituuma lõhustumisest. Tuumaelektrijaamades on võimalik toota elektrienergiat suures koguses, ökonoomselt ja õhusaastevabalt. Tuumaelektrijaamad ei eralda kasvuhoonegaase ega saasta õhku. Normaalse töö korral tekib väga vähe tahkeid jäätmeid ja kütus on odav, sest seda kulub väga vähe. Sel põhjusel on maailmas väga suured tuumakütuse potentsiaalsed varud. Tänapäeval annavad tuumajaamad 17% kogu elektrienergiast, peaaegu

Füüsika
15 allalaadimist
thumbnail
19
pptx

Tuumaenergia powerpoint

Tuumaenergia Rõngu Keskkool Pillerin Palo 9.klass 2010/11 õa Tuumaenergia ajalugu · 1789.a avastas Martin Heinrich Klaproth aine, mille ta nimetas uraaniks(uraandioksiid).S Click to edit Master text styles uri aastal 1817. Second level Third level Fourth level · Metallist uraani sai Fifth level esmakordselt alles Eugen Péligot aastal 1841. Tuumaenergia ajalugu 2

Keemia
21 allalaadimist
thumbnail
28
rtf

Tuumaenergeetika uurimistöö

JÕGEVA ÜHISGÜMNAASIUM 11.A klass Siim Kaaver Tuumaenergeetika Uurimustöö Juhendaja: õp. Heli Toit Jõgeva 2010 SISUKORD Sissejuhatus..................................................................................................................... 1. Mis on tuumaenergia?........................................................................................... 2. Kuidas tuumaenergia tekib?.................................................................................. 3. Tuumaenergia kasulikkus...................................................................................... 4. Tuumkütus............................................................................................................. 5. Tuumareaktor........................................................................................................ 6. Levinuimad reaktoritüübid.....

Füüsika
121 allalaadimist
thumbnail
9
doc

Tuumajaamad

laviinitaoliselt paljuneda. Varraste järkjärgulise reaktorist väljatõmbamise teel oli võimalik väga kindlalt ja täpselt reguleerida ahelreaktsiooni algusmomenti ja kiirust ning automaatselt hoida seda mistahes soovitaval tasemel. Peale selle olid reaktoris kanalid mõõteriistade ning neutronitega pommitamiseks aktiivtsooni viidavate ainete jaoks. Reaktori töö käigus tekkis väga ohtlik, suure läbimisvõimega neutron- ja gammakiirgus, seepärast tuli reaktor ümbritseda kahe-kolme meetri paksuse betoonkestaga, nn bioloogilise kaitsega. Tuumareaktoreid kasutatakse elektrienergia tootmiseks, teaduslikel uurimistöödel rakendavate võimsate neutronivoogude tekitamiseks, mitmesuguse kiirgusintensiivsuse ja poolestusajaga radioaktiivsete tehisisotoopide valmistamiseks, ainete kiiritamiseks nende füüsikaliste ja 3

Füüsika
82 allalaadimist
thumbnail
4
odt

Tuumaenergia

Tuumaenergia Tuumaenergia ehk aatomienergia on füüsika seisukohast aatomituuma moodustavate elementaarosakeste süsteemi seoseenergia, mis võib tuumareaktsioonides vabaneda. Tuumaenergia ajalugu on lühike. Martin Heinrich Klaproth avastas 1789. aastal uraandioksiidi. Metallilist uraani sai aga esimest korda alles Eugen Peligot 1841. aastal. 1896. aastal avastas Henri Becquerel, et uraan kiirgab mingisuguseid nähtamatuid kiiri, mis on võimelised läbima musta paberit ja põhjustama fotoplaadi tumenemist. Ta nimetas selle kiirguse uraanikiirteks. Samal ajal avastasid Marie ja Pierre Curie, et uraanikiired on omased ka mõndadele teistele ainetele ning nimetasid need kiired ümber radioaktiivseks kiirguseks. Alles 1939. aastal avastasid Otto Hahni ja Fritz Strassmann, et uraani isotoobi 235 tuum lõhustub aeglaste neutronite mõjul, kiirates välja energiat ning veel 2-3

Füüsika
4 allalaadimist
thumbnail
20
pdf

Tuumaenergia

TUUMAENERGIA REFERAAT Õppeaines: Ökoloogia ja keskkonnakaitse Ehitusteaduskond Tallinn 2013 SISUKORD SISSEJUHATUS ....................................................................................................................................................3 1. TUUMAENERGIA OLEMUS ..........................................................................................................................4 1.1. Tuumaenergia tekkimine....................................................................................................................4 1.2. Tuumkütus..........................................................................................................................................4 1.3. Reaktorite liigitamine .........................................................................................................................5 2. TUUMAENERGIA KASUTAMINE MAAILMAS........

Ökoloogia ja keskkonnakaitse
20 allalaadimist
thumbnail
8
doc

Tuumaenergia ja selle kasutamine.Radioaktiivsue kahjulikkus.

Tuumaenergia ja selle kasutamine Radioaktiivsus ja selle kahjulikkus Tuumaenergia ja selle kasutamine Iga päev puutume kokku energeetikaga: lampi põlema pannes või autoga sõites vajame energiat, kütust. Eesti Energeetika baseerub põlevkivi soojuselektrijaamadel ja sisseveetaval gaasil ning vedelküttel. Kuid selline energia tootmise viis pole kaugeltki ainuke. Tuntud on tuumaenergia ja maailmas aina tõuseb selle populaarsus. See on tõestatud tehnoloogia, mis annab suure panuse maailma elektrivarustuses. Spetsialistid on kindlaks teinud et tuumaenergia on ainus tõeline elektriallikas inimkonna jaoks, mis ei põhjusta kasvuhooneefekti, happevihmu jm. Tuumfüüsika on raske ja keeruline ning selletõttu pole inimkond seda veel täielikult avastanud. Ikka veel tehakse tuumaenergias uusi avastusi ja saadakse aegajalt midagi uut teada. Tuumaenergia ajalugu: *1789

Füüsika
60 allalaadimist
thumbnail
38
docx

Tuumaenergiauus (1)

1.1.1. TUUMAENERGIA REFERAAT Õppeaines: Ökoloogia Õpperühm: TEI-21 Tallinn 2015 SISUKOR Sissejuhatus................................................................................................................... 3 1.Ajalugu.......................................................................................

6 allalaadimist
thumbnail
12
doc

Tuumaenergia materjal

Tuumaenergia Tuumaenergeetika on üks süsinikuvaba energeetika liike, sest tema tootmisel ei toimu süsinikku sisaldava kütuse põletamist ning õhku satub väga vähe globaalset soojenemist põhjustavaid süsinikuühendeid. Samas ei ole tuumaenergia taastuvenergia, sest teda saadakse tänapäeval fossiilsest kütusest ­uraanist - mille varud on lõplikud ja ammenduvad lähema saja aasta jooksul. Füüsikalised alused Kasutatud jooniseid veebidest http://230nsc1.phy-astr.gsu.edu/hbase/hframe.html ja http://www.hpwt.de/Kerne.htm Keemilised elemendid ja isotoobid Aatomid koosnevad positiivselt laetud tuumast, milles sisalduvad prootonid ja neutronid; ning

Füüsika
26 allalaadimist
thumbnail
30
doc

Tuumareaktorid - kordamisküsimused

tootmiseks, aga seega ka eeldused reaktorikütuste valmistamiseks. Katsetati erinevaid reaktoritüüpe - sõjalaevade ning Pu-tootmise reaktoritest arenesid välja hilisemad energiatootmise reaktorid. 1940-1950-ndatel aastatel jõuti tuumasünteesini (kergete tuumade fusioon). Esimene tuumaelektri tootmine eksperimentalreaktorig toimus 1951. aastal USA-s. Esimene riigi elektrivõrku ühendatud 5 MWe võimsusega tuumaelektrijaam avati 1954. aastal NL-s. Reaktorid jaotatakse nelja põlvkonda. Enamus kasutusel olevatest jaamadest kuulub kas teisse või kolmandasse põlvkonda. Põlvkondasid eristavad peamiselt nõuded turvalisusele, efektiivsusele ning säästvale käidule. Tänapäevaste tuumareaktorite arendajate peamiseks sihiks on vähendada kõikvõimalikke tuumajaamaga kaasneda võivaid riske ning optimeerida nende tööd. Nii on näiteks

Tuumareaktorid
21 allalaadimist
thumbnail
11
doc

Tuumaenergia kasutamine

TUUMAENERGIA KASUTAMINE KELLY T. 9A aprill 2008 Sisukord I Tutvuseks lk 3 II Vajadus tuumaenergia järele lk 3 III Kuidas tuumaenergia tekib? lk 4 IV Tänapäevased reaktorid lk 4 V Tuumaenergia kasutamine maailmas lk 5 VI Tuumariigid VII Varitsev oht lk 6 VIII Tuumaenergia kasutamine Eesti lähisriikides lk 7 IX Korduma kippuvad küsimused lk 8 X Kokkuvõte lk 10 Kasutatud materjalid lk 11 2 I. Tutvustuseks Tuumaenergia ehk aatomienergia on füüsika seisukohast aatomituuma moodustavate elementaarosakeste süsteemi seoseenergia, mis võib tuumareaktsioonides vabaneda. Energeetika seisukohast on see elektrienergia,

Füüsika
134 allalaadimist
thumbnail
10
docx

Aatomid Tabel

Kehra Gümnaasium 9. Klass TUUMAELEKTRIJAAMAD Referaat Autor: Juhendaja: Kehra 2017 SISUKORD 1 SISSEJUHATUS Referaadi teemaks valisin tuumaelektrijaamad, sest energeetika on praegu väga aktuaalne teema ja tuumaelekter on üks suure potentsiaaliga osa sellest. 2 1 AJALUGU Tuumareaktor tootis esimest korda elektrit 3. Septembril 1948. aastal X-10 Graphite Reactor'is Oak Ridge'is USA-s. See reaktor tootis piisavalt elektit vaid lambipirni põletamiseks.Teine suurem katse toimus 20. detsembril 1951. aastal Arco lähedal USA-s.27. juunil 1954. aastal tootis tuumaelektrijaam esimest korda piisavalt elektrit elektrivõrgu jaoks

Füüsika
1 allalaadimist
thumbnail
5
docx

Tuumaenergia

Tuumaenergia Koostas: Juhendas : Tuumaenergia ehk aatomienergia on füüsika seisukohast aatomituuma moodustavate elementaarosakeste süsteemi seoseenergia, mis võib tuumareaktsioonides vabaneda. Energeetika seisukohast on see elektrienergia, mida saadakse tänu tuumareaktsioonidele tuumaelektrijaamades. Tuumaelektrijaamades on võimalik toota elektrienergiat suures koguses, ökonoomselt ja õhusaastevabalt. Uuringud näitavad, et tuumaenergiast saadud elekter on söest toodetust isegi odavam. Tänapäeval annavad

Loodus
12 allalaadimist
thumbnail
4
docx

Tuumaenergia

maa-alustes kaevandusdes. Kuigi uraani leidub igal pool maailmas, on kontsentreeritud maagid pigem erandid. Kui kindlad uraani aatomid ahelreaktsioonis lõhustuvad, vabaneb energia. Kui tuumaelektrijaamas toimub selline lõhustumine aeglaselt, siis tuumapommis toimub see väga kiiresti, kuid mõlemal juhul peab lõhustumine olema hoolikalt juhitud. Tuumade lõhustumine toimub kõige paremini kui kasutatakse isotoope, sama aatomnumbriga kuid erineva neutronite arvuga aatomeid - uraan 235 (või plutoonium 239). Uraan 235 on tuntud kui lõhustuv isotoop tänu oma kalduvusele ahelreaktsioonides lõheneda, vabastades energiana soojust. U- 235 lõhustumisel vabaneb kaks või kolm neutornit, mis teiste U-235 aatomitega põrkudes omakorda need lõhustavad, vabastades jällegi kaks kuni kolm neutronit. Ahelreaktsioon leiab aset ainult niinimetatud kriitilise massi ehk piisava arvu U-235 aatomite olemasolul. Seejuures on iga 1000

Geograafia
24 allalaadimist
thumbnail
7
doc

Tuumareaktorid

Briider (ingl breeder - aretaja, sigitaja) ehk paljundusreaktor on selline reaktoritüüp, kus tänu ahelreaktsioonile tekib tuumade lõhustumisel lõhustumisvõimelisi tuumi juurde. Seejuures ümbritseb Maa-sisest tuumajaama ehk georeaktorit vedela välistuuma asemel tahkes olekus niklist ja ränist ehk nikkelsilitsiidist koosnev sfäär. 2005. a. lepiti kokku kuue reaktoritehnoloogia valikus, mis peaksid kujundama tuumaenergia näo lähitulevikus. Kõiki valituid iseloomustab praegustega võrreldes parandatud jätkusuutlikkus, säästlikkus, ohutus, usaldatavus, kindlus terrorirünnaku ja tuumarelvamaterjali diversiooni suhtes ning pikk tööiga (> 60 a). Kõik reaktorid töötavad kõrgetel temperatuuridel, so temperatuuride vahemikus 510-1000°C. Võrdluseks, tänapäeva veereaktorite töötemperatuur on ~330°C. Seejuures neli tüüpi kuuest sobivad tootma

Füüsika
47 allalaadimist
thumbnail
8
docx

Tuumaelektrijaam

Tuumaelektrijaam Sissejuahtus Tuumaelektrijaam on elektrijaam, kus elektrienergiat saadakse aatomituuma lõhustumisest. Esimest korda toodeti tuumareaktori abil elektrienergiat 20. detsembril 1951 USAs Idahos. Esimene tuumaelektrijaam oli Obninski tuumaelektrijaam mis alustas tööd 27. juunil 1954 NSV Liidus Kaluga oblastis Obninskis. Esimene, mis oli tööstusliku võimsusega oli Calder Halli tuumaelektrijaam Sellafieldis. 2011. aasta mai seisuga oli maailma tuumaelektrijaamades 440 tegutsevat reaktorit, mis kokku tootsid 17% maailma elektrienergiast. Kõige rohkem on reaktoreid USAs arvuga 104, järgmisena Prantsusmaa arvuga 58, Jaapan arvuga 50ja Venemaa arvuga 32 reaktorit.

Füüsika
20 allalaadimist
thumbnail
14
doc

Tuumaenergia tulevik

......................................lk 3 Tuumaenergia tänapäeval: head ja halvad küljed........................................................lk 4 Tuumaenergia tulevik..............................................................................................lk 5, 6 Kasutatud allikad.........................................................................................................lk 7 2 Tuumaenergia ajalugu Et tuumaenergia tulevikku arutada, peab enne aru saama, mis see täpsemalt endast kujutab ja kuidas see tekkis. Tuumafüüsika kui teadusharu sündis koos radioaktiivsuse juhusliku avastamisega prantsuse teadlase Henri Becquereli poolt aastal 1896. Järgnevate aastakümnete jooksul on oma panuse selle teadusharu arengusse andnud mitmed nimekad teadlased. Seda veidi üle sajandi vanust avastust on rakendatud väga erinevates valdkondades -

Elektroenergeetika
5 allalaadimist
thumbnail
28
docx

Tuumaenergia ja selle kasutamine

miljon korda rohkem energiat kui tüüpilises keemilises rektsioonis. Päikeseenergia, mis tekib Päikese sügavuses toimuvates tuumaprotsessides, kujundab Maa ilmastikku ja kütab lõppkokkuvõttes, pärast mitmeid muundumisi, meie tuba ja hoiab alal meie keha elutegevuse. Jua üle poole sajandi on inimesed püüdnud omal käel tuumaprotsessidest energiat saada ja seda võrdlemisi edukalt- tuumaelektrijaamade osa planeedi ehk elektrienergiatoodangus on umbes 14%. Olkiluoto tuumaelektrijaam Soomes Eurajoel Rauma lähedal. 3 Tuumareaktsioonid Tuumareaktsioonid Tuumarektsioon on kahe aatomituuma või elemetaarosakese ja aatomituuma kokkupõrge, mille tulemusena tekivad uued aatomituumad ja/või elementaarosakesed. Tuumareaktsioonil vabaneb energia grammakiirgusena. Kui vabanenud neutron tabab uraan -238 tuuma, neelab uraanituum neutroni kuid ei muutu ebastabiilseks, vaid kiirates 2 elektroni (neutoneid

Füüsika loodus- ja...
14 allalaadimist
thumbnail
2
docx

Tuumakütus, tuumapomm ja reaktor

· k = ntekkinud - nkaotatud · k on väiksem kui 1 -> alakriitiline. Kiirgab neutronkiirgust, selle suurus oleneb k'st. · ..suurem..->ülekriitiline. · Kõik tuumarelvad vajavad plahvatamiseks ülekriitilise massi saavutamist. · K=1 on kriitiline. Kõik tuumajaamad töötavad selles reziimis. Tuumakütuseks sobivad elemendid: · Enamuse reaktorite kütuseks olev uraan koosneb eelkõige kahest isotoobist, milleks on uraan-235 ja uraan-238 · Mõnedes reaktorites üritatakse kasutada kütusena oksiidkütusesegu, mis sisaldab rikastatud uraani, kuhu on segatud kasutatu kütuse töötlemisel saadud plutoonium. · Osadeks võivad lõhustuda ainult mõnede raskete elementide tuumad.Tuumade lõhustumisel kiirgub 2-3 neutronit ja gammakiired

Termodünaamika
14 allalaadimist
thumbnail
3
docx

Tuumaenergia referaat

Tuumaenergia olemus Tuumafüüsika kui teadusharu sündis koos radioaktiivsuse juhusliku avastamisega prantsuse teadlase Henri Becquereli poolt aastal 1896. Järgnevate aastakümnete jooksul on oma panuse selle teadusharu arengusse andnud mitmed nimekad teadlased. Seda veidi üle sajandi vanust avastust on rakendatud väga erinevates valdkondades tuumaenergia rakendusi on ära kasutatud sõjatööstuses, samas teisalt on praktiliselt võimatu kujutada tänapäevast elu ette ilma selle rakendusteta meditsiinis või energiatootmises. Tuumaenergeetika erineb oluliselt teistest energia saamise viisidest. Tuumaenergiat loetakse säästvaks, sest energia tootmise protsessis ei eraldu CO 2. Samas võib tuumajaamaga kaasneda oht radioaktiivse saaste kandumiseks keskkonda.. Lisaks

Geograafia
36 allalaadimist
thumbnail
3
docx

Tuumafüüsika konspekt

tugevastu radioaktiivsed ning on seetõttu elusorganismidele ohtlikud. (uus) tuumapommis paikneb lõhustuv aine kahes osas, mis mõlemad on parajasti nii väiksed, et juhuslikul tuuma lõhustumisel tekkinud neutronid valdavalt väljuvad ainest ilma uusi tuumi kohtamata e paljunemistegur on alla ühe. Suuremas ainekoguses neutronil on uue tuuma kohtamise tõenäosus suurem. Kui ainet on koos niipalju, et igast neutronist sünnib keskmiselt üks uus lõhustumist esilekutsuv neutron, siis on paljunemistegur võrdne ühega ja kord alanud reaktsioon jätkub muutumatu kiirusega. Vastavat ainekoguse massi nim kriitiliseks massiks. Pommi lõhkemiseks surutakse kaks poolkerakujulist ainekogust tavalise lõhkeaine plahvatuse abil kokku suuremaks kehaks, mille mass on ülekriitiline, selles on siis neutronite neeldmuse tingimused nii head, et paljunemistegur on üle ühe ning areneb kiirelt laienev ahelreaktsioon

Füüsika
62 allalaadimist
thumbnail
5
doc

Tuumaenergia

Tuumaenergia Tuumaenergia on tõestatud tehnoloogia, mis annab suure panuse maailma elektrivarustuses. Tänaseks on spetsialistidele piisavalt selge, et tuumaenergia on ainus tõeline elektriallikas inimkonna jaoks, mis ei põhjusta kasvuhooneefekti, happevihmu jm. Fossiilsed kütused annavad praegu üle poole maailma elektritoodangust; hüdroenergia ja tuumaenergia osatähtsus on tunduvalt väiksem. Tuumaenergia üksi ei kindlusta turvalisust ja pidevat elektrivarustatust üle maailma ega saa ka ainsaks faktoriks kahandamaks kasvuhoonegaaside emissiooni, kuid ta mängib tähelepanuväärset rolli antud alal. Tuumajaamad peavad oma ellujäämiseks ka tulevikus tõestama oma turvalisust ja seda, et jäätmete ladustamine ei kahjustaks mingilgi moel keskkonda. Tuumaelektrijaamadel on väga kõrge ehitusmaksumus, kuid selle kompenseerib väga madal kütuse hind. Gaasipõletusjaamu võib ehitada odavalt,

Füüsika
75 allalaadimist
thumbnail
6
doc

Tuumaeneergia ja selle kasutamine

miljon korda rohkem energiat kui tavalises keemilises reaktsioonis. Päikeseenergia, mis tekib Päikese sügavuses toimuvates tuumaprotsessides, kujundab Maa ilmastikku ja kütab lõppkokkuvõttes, pärast mitmeid muundumusi, meie tuba ja hoiab alal meie keha elutegevuse. Juba pool sajandit on inimesed püüdnud omal käel tuumaprotsessidest energiat saada ja seda võrdlemisi edukalt ­ tuumaelektrijaamade osa planeedi elektrienergiatoodangus on umbes 18%. Mis on tuumaenergia? Tuumaenergia ehk aatomienergia on füüsika seisukohast aatomituuma moodustavate elementaarosakeste süsteemi seoseenergia, mis võib tuumareaktsioonides vabaneda. Tuumaenergia ajalugu Tuumaenergia ajalugu on lühike. 1789. a avastas Martin Heinrich Klaproth aine, mille ta nimetas uraaniks. Tegelikult oli saadud aine aga uraandioksiid, mitte puhas uraan. Klaproth suri 1817.a ega saanudki oma eksitusest teada. Metallist uraani sai esmakordselt alles Eugen Peligot aastal 1841.

Füüsika
58 allalaadimist
thumbnail
15
doc

Tuumaenergeetika

Tegelikult oli saadud aine uraanioksiid. Klaproth suri enne, kui saadi eksitusest teada. E. Parun Rutheford (Nobel 1908) tegi esimese tuumareaktsiooni aastal 1919. Uraanituumast energia saamise alguseks loetakse Otto Hahni ja Frizz Strassmanni avastus aastal 1939, mis näitas, et uraani isotoobi 235 tuum lõhustub aeglaste neutronite mõjul, kiirates välja energiat ja veel 2-3 neutronit, mis on omakorda võimelised veel teisi uraanituumi lõhustama, tekitades ahelreaktsiooni. Siit algaski tuumaenergia kasutamine, mida hakati ka kiiresti realiseerima. Nüüdseks on tuumaenergiat kasutatud elektri tootmisel juba 50 aastat. Selle aja jooksul on tuumaenergeetika läbinud pika arengutee. Praeguseks on ehitatud ligi pooltuhat erineva konstruktsiooniga tuumajaama, kusjuures enamik töötavatest kuulub teise põlvkonda, uued ehitatavad aga juba ohutumasse ja ökonoomsemasse kolmandasse põlvkonda. Paljude riikide koostööna on asutud välja töötama veelgi täiuslikemaid IV generatsiooni jaamu.

Füüsika
196 allalaadimist
thumbnail
6
doc

Tuumareaktorid

Tuumaenergia ehk aatomienergia on füüsika seisukohast aatomituuma moodustavate elementaarosakeste süsteemi seoseenergia, mis võib tuumareaktsioonides vabaneda. Energeetika seisukohast on see elektrienergia, mida saadakse tänu tuumareaktsioonidele tuumaelektrijaamades. Tuumaelektrijaamades on võimalik toota elektrienergiat suures koguses, ökonoomselt ja õhusaastevabalt. Uuringud näitavad, et tuumaenergiast saadud elekter on söest toodetust isegi odavam. Tänapäeval annavad tuumaelektrijaamad 17% kogu elektrienergiast, peaaegu sama palju kui hüdroelektrijaamad. Uraan kui kõige alus: · Tuumaelektrijaamas kasutatakse kütusena uraani, mille varusid arvatakse jätkuvat umbes viiekümneks aastaks. · Rikkalikumad uraanileiukohad on Kanadas, USA-s ja LAV-s. (Kasutatakse peamiselt Uraan-238 isotoopi ja Pu-239 isotoopi. Uraan-238 peab rikastama niipalju et U-235 isotoobi protsent oleks vähemalt 3. )

Füüsika
25 allalaadimist
thumbnail
63
pptx

Tuumafüüsika ja elementaarosakeste füüsika

Tuum on kerataoline keha aatomi keskmes, mille ümber tiirlevad elektronid. Aatomi läbimõõt 1010m Tuum on umbes 100 000 Tuuma läbimõõt 1015m korda väiksem kui aatom Tuuma on koondunud suurem osa aatomi massist. Tema suurust mõõtis esmakordselt E. Rutherford 1911. aastal. 3 Tuuma koostisosakesed 4 1913.a. Tuuma koostisosakesed nukleonid 1920.a. Prooton Neutron Prootonite arv tuumas Tuuma "täiteaine" määrab keemilise Elektriliselt elemendi. neutraalselt laetud Prooton on positiivselt laetud Tavaliselt on tuumas Prootoni mass ­ neutronid sama palju 1836,1 elektroni massi kui prootonid. 1,6726 · 1027 kg Neutroni mass ­ Prootoni mass on umbes kaks tuhat 1838,7 elektroni massi korda suurem kui 1,6749 · 1027 kg

Füüsika
22 allalaadimist
thumbnail
13
docx

Füüsika konspekt - aatomifüüsika, aatomimudelid

Prootonite arv (aatomnumber ehk järjekorranumber ehk laenguarv) määrab elemendi tuumalaengu ja on võrdne elektronide arvuga aatomis, nii et aatomid on elektriliselt neutraalsed. Tuuma tähtsaim osake, tähistatakse tähega Z. Neutron 1920.a. hüpotees E. Rutherford 1932.a. J.Chadwick ­ katseline tõestus (berülliumi aatomi tuumasid pommitatakse -osakestega, eralduvad neutronid) Elektriliselt neutraalsed tuumaosakesed. Samal elemendil võib tuumas olla erinev arv neutroneid. Neutron on veidi suurema massiga kui prooton. Tähistatakse tähega N. Suure läbitungimisvõimega. Mittestabiilne osake, vaba neutron laguneb prootoniks ja elektroniks (poolestusaeg ca 12 minutit). Laenguarv Prootonite arv tuumas, tähis Z Prootonite arvu muutudes tekib uus element (näit. radioaktiivsuse, tuumareaktsioonide tulemusel). Tuuma tähis - X X ­ keemilise elemendi tähis A ­ massiarv (prootonite ja neutronite summa) Z ­ prootonite arv

Füüsika
91 allalaadimist
thumbnail
1
odt

Tuumaelektrienergia

Tuumaelekterienergia ESSEE Tuumaelektrijaam on elektrijaam, kus elektrienergiat saadakse aatomituuma lõhustumisest. Tuumaelektrijaamades on võimalik toota elektrienergiat suurtes kogustes. Planeedi elektrienergiatoodangust moodustab tuumaelekter umbes 18%. 20. detsember 1951 USAs toodeti esimest korda tuumareaktori abil elektriaenergiat. Esimene tuumaelektrijaam alustas 27. juuni 1954. Maailmas on kokku 442 tuumareaktorit. Tuumaenergia avastas M. H. Klaproth aastal 1789. Tuumaenergia tekitamiseks lõhustatakse tuumasid ja selle tagajärjel vabaneb suur osa energiat. Reaktoris toimub tootmiseks ahelreaktsioon. Seal vabaneb energia soojusena. Soojust kasutatakse vee kuumutamiseks ja auru tekitamiseks. Turbogeneraatorid kasutavad töötamiseks auru. Ahelreaktsioonis pommitatakse suure massiarvuga tuumi aeglustatud neutronitega

Füüsika
11 allalaadimist
thumbnail
44
ppt

Referaat...

Väiksema aatominumbriga elementide stabiilsetes isotoopides on neutronite ja prootonite arv ligikaudu võrdne Raskemate elementide (Z > 30) stabiilsetes isotoopides muutub aga neutronite arv võrreldes prootonitega üha suuremaks, näiteks uraani isotoopis on 92 prootoni kõrval 146 neutronit. Isotoopide esinemissagedus ei ole ühesugune, enamasti domineerib üks või kaks isotoopi. Radioaktiivsus (kr k radius ­ kiir) 1896 Antoine Henri Becquerel Marie ja Pierre Curie Uraan, raadium, poloonium Tuumade iseeneselik kiirgus Radioaktiivsus Radioaktiivsus on tuumade võime iseenesest kiirata. Radioaktiivset kiirgust on kolme liiki (liigitati läbitungimisvõime järgi) kiirgus ­ läbib vaevalt paberilehe kiirgus ­ võib läbi tungida kuni 3 mm alumiiniumilehest kiirgus ­ läbib mitme sentimeetrise pliiplaadi kiirgus ­ Heeliumi tuumade voog kiirgus ­ elektronide voog kiirgus ­ suure sagedusega

Füüsika
73 allalaadimist
thumbnail
3
docx

Tuumaelektrijaamast

1.Tuumaenergia algus Tuumafüüsika kui teadusharu sündis koos radioaktiivsuse juhusliku avastamisega prantsuse teadlase Henri Becquereli poolt aastal 1896. Järgnevate aastakümnete jooksul on oma panuse selle teadusharu arengusse andnud mitmed nimekad teadlased. Seda veidi üle sajandi vanust avastust on rakendatud väga erinevates valdkondades - tuumaenergia rakendusi on ära kasutatud sõjatööstuses, samas teisalt on praktiliselt võimatu kujutada tänapäevast elu ette ilma selle rakendusteta meditsiinis või energiatootmises. Tuumaenergeetika erineb oluliselt teistest energia saamise viisidest. Tuumaenergiat loetakse säästvaks, sest energia tootmise protsessis ei eraldu CO2. Samas võib tuumajaamaga kaasneda oht radioaktiivse saaste kandumiseks keskkonda.. Lisaks eraldub , nii nagu teistestki

Geograafia
14 allalaadimist
thumbnail
14
odt

Tuumaenergia kasutamine, füüsika

Referaat Virgo Ernesaks EÜ12 Tuumaenergia kasutamine Jaanuar 2015 Sissejuhatus Tuumaenergia ehk aatomienergia on füüsika seisukohast aatomituuma moodustavate elementaarosakeste süsteemi seoseenergia, mis võib tuumareaktsioonides vabaneda. Energeetika seisukohast on see elektrienergia, mida saadakse tänu tuumareaktsioonidele tuumaelektrijaamades. Tuumaelektrijaamades on võimalik toota elektrienergiat suures koguses, ökonoomselt ja õhusaastevabalt

Füüsika
7 allalaadimist
thumbnail
2
doc

Tuumafüüsika

Üldjuhul võib lagunemise esitada järgmisel kujul: Kus X on ematuum, Y on tütartuum ning A ja Z vastavalt ematuuma massiarv ja aatominumber. · lagunemisel jääb tütartuuma nukleonide koguarv samaks, mis ematuumalgi, kuid ühe võrra on suurenenud prootonite arv tuumas. Järelikult on üks lähtetuuma neutronitest muundunud prootoniks. Selle protsessi käigust tekib lisaks elektronile veel üks osake, millele on antud nimeks neutriino ­ väike neutron. 5. Energeetiliselt kasulikud on kergete tuumade sünteesireaktsioon (termotuumareaktsioonid) ja kontrollitavad ahelreaktsioonid (mida kasutatakse tuumareaktoris energia tootmiseks). 6. Energia eraldub tuumareaktsioonides, kui tuum põrkub kokku elementaarosakestega. 7. Kui raske tuum lõhustub, siis tekkinud tuumakildude eriseoseenergia on suurem kui ematuumal. See aga tähendab, et energia jäävuse seaduse järgi peab sellisel

Füüsika
72 allalaadimist
thumbnail
6
docx

Tuumafüüsika kontrolltöö küsimused ja vastused

II osa Tuumafüüsika 1) Kirjelda aatomituuma koostist ja ehitust, kui suur (väike) on aatomituum (suurusjärk)? – Aatomituum koosneb prootonitest ja neutronitest. Prootoni tähis on Z, prooton on positiivse laenguga. Neutroni tähis on N ja neutron on laenguta. Neutronite mass on prootonite massist veidi suurem. Tuuma osakeste kogumassi nimetatakse aatommassiks, mille tähis on A. A=Z+N Prootonite kogulaengut nimetatakse tuumalaenguks, mille tähis on ka Z. Tuuma tähis on ZAX, kus X on keemilise elemendi tähis. Tuuma mõõtmed on suurusjärgus 10-14m. Tuuma osakesi hoiab koos tuumajõud, mille tunnused on 1. On looduses esinev tugevaim jõud 2. Ei sõltu osakeste laengust 3

Füüsika
27 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun