SISSEJUHATUS MATEMAATILISSE LOOGIKASSE Kordamisküsimused (orienteeruv) Mõnede sümbolite tähendused sõna Materjal puudub & Konjuktsioon Ekvivalents üldisuskvantor Järeldumine Disjunktisoon ¬ Eitus olemasolukvantor Signatuur Implikatsioon Samaväärsus Loogiline järeldumine I. Lausearvutus Laused. Lausearvutuse tehted. Valem. Valemi tõeväärtus. Tõeväärtustabel. Laused Põhilised uuritavad objektid lausearvutuses on laused, mis võimaldavad pärineda ükskõik millisest valdkonnast. Oluline on, et igale lausearvutusele saaks vastavusse seada tõeväärtuse, mis kirjeldab lause tegelikkusele vastava määra. Eeldame, et käsitlevad laused rahuldavad järgmisi tingimusi: · Välistatud kolmanda seadus. Iga lause on kas tõene või väär · Mittevasturääkivuse seadus...
Tõestused Omadus 1.4. Maatriksite liitmine on kommutatiivne, s.t. mistahes X, Y Mat(m, n) korral kehtib X + Y = Y + X. Tõestus: Iga X = (xij) ja Y = (yij) korral hulgast Mat(m, n), tänu reaalar- vude liitmise kommutatiivsusele (1.11), saame X + Y = (xij + yij) = (yij + xij) = Y + X X + Y = Y + X Omadus 1.10. (X + Y ) = X + Y Tõestus (X + Y ) = ((xij) + (yij)) = ( (xij + yij)) = ( xij + yij) = = ( xij) + ( yij) = (xij) + (yij) = X + Y (X + Y ) = X + Y; Omadus 1.15. Mistahes maatriksi X Mat(m, n) ning vastavate ühikmaatriksite Em Mat(m,m) ja En Mat(n, n) korral XEn = X, EmX = X Tõestus Maatriksite X = (xij ), kus i Nm, j Nn, ja n-järku ühikmaatriksi E1 = (ij) korrutise XE1 = (yij) üldelement avaldub = = , , , =1 mistõttu XE1 = X. Juhul kui E2 on m-järku ühikmaatriks, siis ...