Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
Ega pea pole prügikast! Tõsta enda õppeedukust ja õpi targalt. Telli VIP ja lae alla päris inimeste tehtu õppematerjale LOE EDASI Sulge

Alumiinium - sarnased materjalid

alumiinium, metall, sulam, duralumiinium, boksiit, magneesium, wöhler, sulamistemperatuur, kaltsium, keemik, friedrich, ammu, järjenumber, aatommass, keemistemperatuur, 2060, töödeldav, tähtsamateks, nh2o, kaoliin, 2sio2, alumiiniumoksiidi, kristalne, lisandite, sulameid, sulamid, mehhaaniliste, lähedased, terasest, materjaliks, kahtlusi, teguriks
thumbnail
6
doc

Alumiinium

PÄRNUMAA KUTSEHARIDUSKESKUS KIVI- JA BETOONKONSTRUKTSIOONIDE EHITUS Marko Tõnisson Alumiinium Referaat Juhendaja: Anne Metsmaa Pärnu 2008 Sisukord: 1. Avastamise lugu 2. Alumiinium 3. Alumiiniumi omadused 3.1. Füsikalise omadused 3.2. Keemilised omadused 4. Alumiiniumiühendite omadused 4.1. Alumiiniumoksiid Al2O3 4.2. Alumiiniumhüdroksiid Al(OH)3 5. Leidmine looduses 6. Alumiiniumi kasutamine Avastamise lugu 1827 a sai väljapaistev saksa keemik, hariduselt arst, Friedrich Wöhler metalli, mida mitte keegi ei olnud kunagi näinud. Veidi varem sai seda metalli Oersted. Algul eraldas Wöhler

Keemia
42 allalaadimist
thumbnail
7
doc

Alumiinium

Katsed saada metalli kangina või suurte teradena jäid tulemusteta. Enne kui neid katseid kroonis 1845.a. edu, kulus 18 aastat püsivaid otsinguid. Väliselt oli ta sarnane hõbedaga, kuid erinevalt viimasest erakordselt kerge, 4 korda kergem hõbedast, 3,5 korda kergem vasest ja peaaegu 5 korda kergem rauast. Kuna uue metalli saamise lähtaineks olid ammu tuntud maarjased (ladina keeles ­ alumen ), siis hakati ka metalli nimetama alumiiniumiks. Alumiinium Alumiinium on tänapäeval üks tuntumaid ja enamkasutatavaid metalle(tähtsuselt teisel kohal raua järel). Kuid umbes 100 aastat tagasi oli alumiinium väga haruldane ja hinnaline metall, millest valmistati vaid luksusesemeid. Alumiiniumi ei leidu looduses ehedana, st lihtainena. Suure keemilise aktiivsuse tõttu esineb ta vaid ühendite koostises. Alumiiniumiühendid on looduses väga laialt levinud. Alumiinium esineb koos hapniku ja räniga

Keemia
184 allalaadimist
thumbnail
2
doc

Alumiinuimoksiid

Alumiiniumoksiid Alumiiniumoksiid (keemiline valem Al2O3) on keemiline ühend, mille molekul koosneb kahest alumiiniumi ja kolmest hapniku aatomist. Looduses leidumine: Alumiinium on metallilistest elementidest looduses kõige enam levinud. Alumiiniumi ei leidu looduses ehedana, st lihtainena.Suure keemilise aktiivsuse tõttu esineb ta vaid ühendite koostises. Alumiiniumiühendid on looduses väga laialt levinud. Alumiinium esineb koos hapniku ja räniga paljude kivimite, savide ning teiste mineraalide koostises. Alumiiniumi tootmise lähtaineks on boksiid. Rikkalikult leidub looduses silikaate, mis sisaldavad alumiiniumi. Neid silikaate nimetatakse alumosilikaatideks. Alumosilikaatide hulka kuuluvad ka savid. Puhast valget savi tuntakse kaoliini nime all ja kasutatakse portselani valmistamiseks. Alumiiniumi füüsikalised omadused on: · Alumiinium on hõbedavalge läikiv metall, peegeldab hästi valgust,

Keemia
9 allalaadimist
thumbnail
8
doc

Alumiinium ja tema sulamid

Tarmo Soots ALUMIINIUM JA TEMA SULAMID REFERAAT Õppeaines: TEHNOMATERJALID Mehaanikateaduskond Õpperühm: KMI11 Juhendaja: Annika Koitmäe Tallinn 2011 1. SISSEJUHATUS 1827 a sai Saksa keemik, kes oli hariduselt arst, Friedrich Wöhler metalli, mida keegi polnud kunagi näinud. Algul eraldas ta metalli keemilisest ühendist halli pulbrina, mis peenestamisel omandas metalse läike. Katsed saada seda metalli kangina või suurte teradenajäid esialgu tulemuseta. Alles 1845 a, peale 18 aastat püsivaid otsinguid sai Wöhler uut metalli nööpnõelapea suuruste teradena. Väliselt oli see sarnane hõbedaga, kuid 4 korda kergem. Kuna uue metalli

Materjaliõpetus
245 allalaadimist
thumbnail
3
doc

Alumiiniumi kasutamine

Alumiiniumi kasutamine Maarja-Liisa Suitso Saue Gümnaasium 9a klass õpetaja Külli Vita Talv 2007 Alumiiniumi kasutamine Veel äsja, sada aastat tagasi oli alumiinium väga haruldane ja hinnaline metall, sest seda ei osatud veel eriti leida ega valmistada. Seetõttu oli ta väga hinnaline ja haruldane metall, millest tehti ainult luksusesemeid. Alumiiniumi valmismaterjalina(ehedana) looduses ei leidu. Looduses leidub seda ainult ühendite koostises. Alumiiniumiühendid on looduses väga laialt levinud ja ta esineb paljude kivimite ja teiste mineraalide koostistes. Tähtsaimaks aluiiniumi tooraineks on mineraalboksiit, mille peamiseks koostisaineks on alumiiniumoksid AL2O3. Alumiiniumil on teiste metallidega võrreldes terve rida eeliseid: - kergus - vastupidavus õhuhapniku suhtes

Keemia
37 allalaadimist
thumbnail
4
doc

Alumiinium

Alumiinium (Aluminium) on keemiline element järjenumbriga 13. Alumiiniumoksiid on amfoteerne oksiid. Tal on üks stabiilne looduslik isotoop massiarvuga. Radioaktiivne isotoop massiarvuga 26 tekib looduses kosmiliste kiirte mõjul. Alumiinium reageerib paljude lihtainete ja hapetega. Hapetest tõrjub ta välja vesinikku ning tekib sool. Amfoteersuse tõttu reageerib alumiinium ka leelistega, tõrjudes nende lahustest vesinikku välja ja moodustades aluminaate. Kõigis püsivamates ühendites on alumiiniumi oksüdatsiooniaste +3. Alumiiniumi tootmise lähtaineks on boksiid, mille valemit võib avaldada üldkujul AlO * nHO . Kaaliumalumiiniummaarjat kasutatakse juba ammusest ajast riide värvimisel. Avastamise lugu: 1827 a sai välja paistev saksa keemik, hariduselt arst, Friedrich Wöhler metalli, mida mitte keegi ei olnud kunagi näinud

Keemia
43 allalaadimist
thumbnail
2
doc

Alumiinium

Alumiinium Avastamine 1827. aastal sai välja paistev saksa keemik, hariduselt arst, Friedrich Wöhler metalli, mida mitte keegi ei olnud kunagi näinud. Veidi varem sai seda metalli Oersted. Algul eraldas Wöhler metallic keemilisest ühendist halli pulbrina, mis peenestamisel omandas metallilise läike. Katsed saada metalli kangina või suurte teradena jäid tulemusteta. Enne kui neid katseid kroonis 1845. aastal edu, kulus 18 aastat püsivaid otsinguid. Wöhler sai uut metalli nööpnõelapeasuuruste teradena. Väliselt oli ta sarnane hõbedaga, kuid erinevalt viimasest erakordselt kerge, 4 korda kergem hõbedast, 3,5 korda kergem vasest ja peaaegu 5 korda kergem rauast.

Keemia
37 allalaadimist
thumbnail
18
docx

Keemia: lahused, metallid, gaasid

referaat Maardu 2014 Sisukord 1) Mis on keemia?..............................................................................................3 2) Lahused................................................................................4 3) Orgaanilised ja anorgaanilised ained...............................................6 4) Magneesium...........................................................................8 5) Allumiinium...........................................................................11 6) Süsivesinikud.................................................................................................12 7) Väärisgaasid............................................................................18 8) Lahuse mõiste.........................................................................20

Keemia
20 allalaadimist
thumbnail
3
rtf

Alumiiniumi referaat

Alumiinium. 1827 a sai välja paistev saksa keemik, hariduselt arst, Friedrich Wöhler metalli, mida mitte keegi ei olnud kunagi näinud. Veidi varem sai seda metalli Oersted. Algul eraldas Wöhler metalli keemilisest ühendist halli pulbrina, mis peenestamisel omandas metallilise läike. Katsed saada metalli kangina või suurte teradena jäid tulemusteta. Enne kui neid katseid kroonis 1845a edu, kulus 18 aastat püsivaid otsinguid. Wöhler sai uut metalli nööpnõelapeasuuruste teradena. Väliselt oli ta sarnane hõbedaga, kuid erinevalt viimasest erakordselt kerge,4 korda kergem hõbedast, 3,5 korda kergem vasest ja peaaegu 5 korda kergem rauast. Kuna uue metalli saamise lähtaineks olid ammu tuntud maarjased , siis hakati ka metalli nimetama alumiiniumiks.Alumiinium, keemiliste elementide perioodilisussüsteemi III rühma element. Järjenumber on 13,aatommass 26,98154

Keemia
49 allalaadimist
thumbnail
1
pdf

Alumiinium

Alumiinium Alumiinium on keemiliste elementide perioodilisussüsteemi III rühma element. Tema järjekorranumber on 13 ja aatommass 26,98154. Alumiiniumi sulamistemperatuur on C ja keemistemperatuur C. 1827. aastal sai väljapaistev saksa keemik, hariduselt arst, Friedrich Wöhler metalli, mida mitte keegi ei olnud kunagi näinud. Algul eraldas Wöhler metalli keemilisest ühendist halli pulbrina, mis peenestamisel omandas metallilise läike. Katsed saada metalli kangina või suurte teradena jäid tulemusteta. Enne kui neid katseid kroonis 1845. Aastal edu, kulus 18 aastat püsivaid otsinguid. Wöhler sai uut metalli nööpnõelasuuruste teradena. Väliselt oli ta sarnane hõbedaga, kuid erinevalt viimasest erakordselt kerge. Alumiinium on 4 korda kergem hõbedast, 3,5 korda kergem vasest ja peaaegu 5 korda kergem rauast. Kuna uue metalli

Materjaliõpetus
20 allalaadimist
thumbnail
4
docx

Keemia referaat Alumiinium

PÄRNUMAA KUTSEHARIDUSKESKUS EHITUSVIIMISTLEJA ALUMIINIUM Referaat Juhendaja: Anne Metsmaa Pärnu 2011 AVASTAMISE LUGU 1827. aastal sai välja paistev saksa keemik, hariduselt arst, Friedrich Wohler metalli, mida mitte keegi ei olnud kunagi näinud. Veidi varem sai seda metalli Oersted. Algul eraldas Wohler metalli keemilisest uhendist halli pulbrina, mis peenestamisel omandas metallilise läike. Katsed saada metalli kangina või suurte teradena jäid tulemusteta. Enne kui neid katseid kroonis 1845. aastal edu, kulus 18 aastat püsivaid otsinguid. Wohler sai uut metalli nööpnõela pea suuruste teradena

Keemia
25 allalaadimist
thumbnail
11
docx

Alumiiniumi tootmine, tema sulamid ja kasutamine

................. Tallinn 2017 Sisukord Tiitelleht ............................................................................................................ ..............................1 Sisukord........................................................................................................... 1 Sissejuhatus..................................................................................................... 2 Alumiinium....................................................................................................... 4 Omadused........................................................................................................ 4 Alumiiniumi levik looduses ning tema tootmine...............................................5 Alumiiniumi kasutamine................................................................................... 5 Ajalugu.......................................................

Keemia
40 allalaadimist
thumbnail
3
doc

Metallid ja nende kasutamine

Metallide kasutamine igapäevaelus sõltub paljuski nende omadustest. Metallid on suhteliselt hästi töödeldavad. Nendest on võimalik venitada traati, valtsida õhukesi lehti, sepistada väga erineva kujuga esemeid. Sulatatud metalle saab valada vajaliku kujuga vormidesse. Metallide heaks omaduseks on ka see, et neid on võimalik kokku keevitada. Metalli valikul tuleb silmas pidada tema keemilist vastupidavust antud tingimustes. Olulised on aga ka metallide füüsikalised omadused: tihedus, sulamistemperatuur, kõvadus jne. Lisaks metalli omadustele tuleb arvestada ka tema kättesaadavust ning hinda. Mida haruldasem on vastav element looduses ning mida keerulisem ja kulukam on metalli tootmine maagist, seda kõrgem on metalli hind. Kergesti sulavaid metalle (näiteks tina ja plii) ei saa kasutada kõrgel temperatuuril töötavate seadmete valmistamiseks. Õnnevalamiseks jõulu- või uusaastaööl sobib tina, mitte tsink või alumiinium, rääkimata rauast ja teistest vel kõrgema

Keemia
71 allalaadimist
thumbnail
86
pdf

Materjalid

............................ 5 1.1.2. Materjalide omadused .................................................................................................................. 6 1.2. Metalsed materjalid ........................................................................................................................... 14 1.2.1. Rauasüsinikusulamid ................................................................................................................. 14 1.2.2. Alumiinium ja alumiiniumisulamid .............................................................................................. 30 1.2.3. Vask ja vasesulamid................................................................................................................... 33 1.2.4. Nikkel ja niklisulamid .................................................................................................................. 35 1.2.5. Titaan ja titaanisulamid......................................

335 allalaadimist
thumbnail
304
doc

ELEMENTIDE RÜHMITAMISE PÕHIMÕTTED

molekulis sidemeenergia kõrge: raskesti polariseeritav Neist omadustest tingitud vähene lahustuvus, madal keemis- ja sulamistemp. Atomaarne vesinik Protsess H2 → 2H (väga endotermil.) algab alles üle 2000C; täielikult atomaarne u. 5000C juures (elektrikaares) protsessid 2H → H2 ; H2 + ½O2 → H2O – äärmiselt eksotermil. Kuid atomaarne vesinik võib in statu nascendi vähesel määral tekkida paljudes protsessides (hape + metall, vabanemine metalli (Pd, Pt) pinnalt jmt.). Atomaarne vesinik – paljudes protsessides väga aktiivne redutseerimisreaktsioonid (Marshi reaktsioon) 2.1.4. Kasutamine ¤ peam. keemiatööstuses, eriti NH3, HCl, CH3OH sünteesil vedelate rasvade hüdrogeenimisel (sh. → margariin) vedel vesinik: raketikütus deuteerium ja raske vesi: tuumaenergeetikas, termotuumapommis vesiniku H2 või H (monovesinik) põlemine – metallide lõikamine, keevitamine 2.1.5. Ühendid

Keemia
72 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun