Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse Registreeri konto

Funktsioon makroga 2 (0)

5 VÄGA HEA
Punktid
Funktsioon makroga 2 #1 Funktsioon makroga 2 #2
Punktid 10 punkti Autor soovib selle materjali allalaadimise eest saada 10 punkti.
Leheküljed ~ 2 lehte Lehekülgede arv dokumendis
Aeg2007-12-19 Kuupäev, millal dokument üles laeti
Allalaadimisi 103 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor barca10 Õppematerjali autor

Märksõnad

Sarnased õppematerjalid

thumbnail
30
pdf

Funktsioon loeng 2

Funktsioon Funktsiooni definitsioon Olgu X mingi reaalarvude hulk. Kui muutuja x igale väärtusele hulgas X vastab muutuja y üks kindel väärtus, siis öeldakse, et y on muutuja x funktsioon. Asjaolu, et üks muutuja on teise funktsioon, tähistatakse y = f (x), y = y (x), y = (x) jne. Muutujat x nimetatakse seejuures sõltumatuks muutujaks e. argumendiks. Muutujat y, mille väärtused leitakse vastavalt sõltumatu muutuja väärtustele, nimetatakse sõltuvaks muutujaks. Argumendi x väärtuste hulka, mille puhul saab määrata funktsiooni y väärtusi vastavalt eeskirjale f (x), nimetatakse funktsiooni määramispiirkonnaks. Määramispiirkonnale vastavat funktsiooni väärtuste hulka nim. funktsiooni muutumispiirkonnaks. 2 Funktsiooni esitusviise Funktsiooni esitus tabelina x x1 x2 ....... xn y y1 y2 ...... yn Funktsiooni graafiline esitusviis y

Matemaatika
thumbnail
1
doc

Funktsioon

Funktsiooni määramispiirkonnaks nim. argumendi väärtuste hulka, mille korral saab leida f-ni väärtust. Funktsiooni muutumispiirkonnaks nim. funktsiooni väärtuste hulka. Paaris funktsiooni graafik on sümmeetriline y-telje suhtes. Paaritu funktsiooni graafik on sümmeetriline koordinaatide alguspunkti suhtes. Funktsiooni nullkohaks nim. argumendi väärtust, mille korral funktsiooni väärtus võrdub 0-ga. y = 0 Funktsiooni positiivsuspiirk. nim. argumendi väärtuste hulka, mille korral funktsiooni väärtused on positiivsed. y > 0 Funktsiooni negatiivsuspiirk. nim. argumendi väärtuste hulka, mille korral funktsiooniväärtused on negatiivsed. y < 0 ____________________________________________________________________________________________ Funktsiooni pöördfunktsiooni leidmiseks tuleb a.) vahetada muutujad x ja y b.) saadud avaldisest avaldada y Funktsiooni graafik ja tema pöördfunktsiooni graafik on sümmeetrilised y

Matemaatika
thumbnail
1
doc

Funktsioon

Ande Andekas-Lammutaja Matemaatika ­ Funktsioon Funktsiooniks nimetatakse vastavust, mis seab sõltumatu muutuja x igale väärtusele hulgale X vastavusse sõltuva muutuja y ühe kindla väärtuse hulgast Y (Funktsioon on seos kahe muutuja vahel, kus ühe muutuja igale väärtusele vastab üks kindel teise muutuja väärtus). Võrdelise seose valemiks on y = ax ja tunnuseks a = y/x. Graafikuks on sirgjoon, mis läbib punkte (0;0) ning (1;a). Pöördvõrdelise seose valemiks on y = a/x, kus x 0 ja tunnuseks a = xy. Graafikuks on hüperbool. Lineaarfunktsiooni valemiks on y = ax + b ning graafikuks sirgjoon, mis läbib punkte (0;b) ning (1;a+b). Funktsiooni määramispiirkond (X) on sõltumatu muutuja e. argumendi x väärtuste e. funktsiooni väärtuste hulk. Funktsiooni muutumispiirkond (Y) on sõltuva muutuja y väärtuste hulk. Fun

Matemaatika
thumbnail
1
odt

Funktsioonid I

Funktsioone, mille kahanemisvahemik Funktsioone, mille kasvamisvahemik ühtib ühtib määramispiirkonnaga, nimetatakse määramispiirkonnaga, nimetatakse kasvavateks kahanevateks funktsioonideks. funktsioonideks. Paarisfunktsiooni graafik on sümeetriline y- telje suhtes. Astmefunktsioonid : Paaritu funktsiooni graafik on sümeetriline y=X^-2 ehk Y=1/X^2 kordinaatide alguspunkti suhtes. y=X^-3 ehk Y=1/X^3 Paarisfunktsioon A

Matemaatika
thumbnail
1
doc

Funktsioonid

1. Millist funktsiooni nimetatakse lineaarfunktsiooniks ja mis on selle graafikuks? Lineaarfunktsioon on funktsioon y=ax+b, kus a ja b on mistahes reaalarvud. Selle graafikuks on sirgjoon 2. Mida nimetatakse funktsiooni määramispiirkonnaks? Funktsiooni määramispiirkonnaks nimetatakse selliseid argumendiväärtuseid, mille korral on reaalne funktsiooni väärtus olemas 3. Millised võimalused on funktsiooni esitamiseks Valemina, tabelina, graafiliselt, järjestatud arvupaaridena, nool diagrammidega 4. Mida nimetatakse funktsiooni null kohaks ja mida negatiivsus piirkonnaks? Funktsiooni null koht on selline x väärtus kui graafik lõikab x telge. y = null. Negatiivsuspiirkonna moodustavad need argumendi väärtused, mille korral on funktsiooni väärtus negatiivne ehk y on väiksem 0 5. Millal on funktsioon kasvav? Kui suuremale argumendi väärtusele vastab suurem funktsiooni väärtus 6. Mis on funktsiooni ekstreemumkoht? Argumendi väärtust, mille korral funktsioon saavutab oma

Matemaatika
thumbnail
3
doc

Funktsioonid

Siinusfunktsioon on paaritu funktsioon. Siinusfunktsiooni graafik on sümmeetriline koordinaatide alguspunkti suhtes. Siinusfunktsioon on perioodiline funktsioon perioodiga 2(pii). Funktsiooni y=cosx määramispiirkonnaks on kogu reaalarvude hulk R. Koosinusfunktsioon on paarisfunktsioon, graafik on sümmeetriline y-telje suhtes. Koosinusfunktsioon on perioodiline funktsioon perioodiga 2(pii). Tangensfunktsioon on paaritu funktsioon. Tangensfunktsiooni graafik on sümmeetriline koordinaatide alguspunkti suhtes. Tangensfunktsioon on perioodiline funktsioon perioodiga (pii). Arvu m arkussiinuseks nimetatakse vähimat nurka, mille siinus on m.

Matemaatika
thumbnail
1
odt

Funktsiooni lugemine graafikult

Ekstreemumkoht ­ on argumendi väärtus, mille korral on funkts. Suurim vi vähim väärtus Ekstreemumpunkt ­ On graafiku punkt, kus funktsioonil on kas suurim või vähim väärtus Kasvamispk ­ nim. Argumendi väärtuste hulka, mille korral suuremale argumendi väärtusele vastab suurem funkts. Väärtus (selles piirkonnas on funkts. Graafik tõusev) Kahanemispk ­ on argumendi väärtuste hulk, mille korral suuremale väärtusele vastab väiksem funkts. Väärtus (graafik langev) Käänupkt- punkt, millest läbiminekul joon muutub kumerast või nõgusast kumeraks. Kumeruspk ­ argumendi väärtuste hulk, kus graafik on kumer Nõgususpk - argumendi väärtuste hulk, kus graafik on nõgus Paarisfunk ­ graafik on sümeetriline y-telje suhtes Paaritufunk­ graafik on sümeetriline kordinaatide alguspunkti suhtes Funktsioon-eeskiri, mille järgi sõltumatu muutuja igale väärtusele seatakse vastavusse sõltuvamuutuja üks kindel väärtus. Funk määrpk- sõltumatu muutuja väärtust

Matemaatika
thumbnail
27
ppt

Funktsioonid ja nende graafikud

Funktsioonid ja nende graafikud © T. Lepikult, 2010 Funktsioon Kui muutuva suuruse x igale väärtusele, mis kuulub tema muutumispiirkonda, vastab teise suuruse y üks kindel väärtus, siis öeldakse, et y on x funktsioon. Asjaolu, et üks muutuja on teise funktsioon, tähistatakse y = f(x). Näited: Kuubi ruumala on tema serva pikkuse funktsioon, suusataja poolt läbitud teepikkus on aja funktsioon, vedru deformatsioon on tõmbejõu funktsioon jne. Funktsiooni argument Muutujat x nimetatakse seejuures sõltumatuks muutujaks e. argumendiks. Argumendi x väärtuste hulka, mille puhul saab määrata funktsiooni y väärtusi vastavalt eeskirjale f(x), nimetatakse funktsiooni määramispiirkonnaks. Määramispiirkonnale vastavat funktsiooni väärtuste hulka nimetatakse funktsiooni muutumispiirkonnaks. Näide Ringi pindala sõltuvust raadiusest kirjeldab funktsioon S = r 2 , kus s

Matemaatika




Meedia

Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri





Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun