FUNKTSIOONI PIDEVUS Pidevuse mõiste. Katkevuspunktid FUNKTSIOONI PIDEVUSE MÕISTE Funktsiooni pidevuse mõiste Funktsiooni y = f (x) nimetatakse pidevaks punktis a, kui on täidetud tingimus: · Võrdusest lim = () on näha, et funktsiooni pidevus punktis a on iseloomustatud järgmise kolme tingimusega: o f(a), st punkt a peab olema funktsiooni määramispiirkonnast; o lim ; o kehtib võrdus lim = (). · Funktsioon on pidev mingis piirkonnas, kui ta on pidev selle piirkonna igas punktis. Ühepoolne pidevus Öeldakse, et funktsioon y = f(x) on punktis a paremalt pidev, kui lim = (). + · Öeldakse, et funktsioon y = f(x) on punktis a vasakult pidev, kui lim = (). - · Funktsioon on pidev punktis a, kui ta on selles punktis pidev nii vasakult kui ka paremalt. FUNKTSIOONI KATKEVUSPUNKTID Fu...
1. Kahje muutuja funktsioonid(definitsioon, määramis- ja muutumispiirkonna definitsioon ja tähistused, näited, esitusviisid, ilmutamata kujul esituse definitsioon, graafik ja graafiku näiteid) DEF: Kahe muutuja funktsioon f on kujutus, mis seab igale arvupaarile (x,y) ∈ D vastavusse ühe reaalarvu z= f ( x , y ) Nende punktide (x,y) hulka D, mille puhul funktsiooni väärtus on lõplik, nimetatakse selle funktsiooni määramispiirkonnaks. Funktsiooni väärtuste z hulka Z nimetatakse funktsiooni muutumispiirkonnaks. Esitusviis : z=f (x , y ) z- sõltuv muutja, (x,y)- sõltumatud muutujad Näide: Funktsioon võib olla antud ilmutatud kujul z= f (x1 , x2 , x3 , … x n) (z=x2+y2-5) või ilmutamata kujul F ( x 1 , x 2 , ...
Matemaatilise analüüsi (I) I osaeksami teooriaküsimused (Tallinnas õppivatele kaugõppijatele) 1. Ratsionaalarvud, irratsionaalarvud, reaalarvud. Reaalarvu absoluutväärtus ehk moodul. Positiivseid ja negatiivseid täis- ning murdarve koos arvuga null nimetatakse ratsionaalarvudeks. Lõpmatute mitteperioodiliste kümnendmurdudena esitatavaid arve nimetatakse irratsionaalarvudeks. Kõik ratsionaal- ja irratsionaalarvud koos moodustavad reaalarvude hulga. x Reaalarvu absoluutväärtuseks ehk mooduliks x nimetatakse mittenegatiivset reaalarvu, mis rahuldab tingimusi x = x, kui x 0, x = -1, kui x < 0. x x. Kehtib seos 2. Muutuv suurus ehk muutuja, jääv suurus ehk konstant. Muutuva suuruse muutumispiirkond. Mõisted: vahemik, lõik, poollõik. Kasvav ja kahanev muutuv suurus, monotoonne suurus. Tõkestatud muutuv suurus. Suurust, mis omandab mitmesuguseid vää...
YMM3731 Matemaatiline analu¨u¨s I 2007/08 ~o.-a. su¨gissemestril 3,5 AP 4 2-0-2 E S Dots. Lembit Pallas TTU¨ Matemaatikainstituut V-404, tel. 6203056 e-post: [email protected] K¨asitletavad teemad on toodud punktide kaupa. Neid punkte tuleb vaadelda ka kui kollokviumide ja eksami teooriak¨ usimusi. 1. Funktsiooni m~oiste ja esitusviisid 2. Funktsioonide liigitamine (paaris- ja paaritud funktsioonid, perioodilised funktsioo- nid, kasvavad ja kahanevad funktsioonid) 3. P¨o¨ordfunktsioon 4. Liitfunktsioon 5. Jada piirv¨aa¨rtus 6. Funktsiooni piirv¨aa¨rtus ¨ 7. Uhepoolsed piirv¨aa¨rtused 8. L~opmatult kasvavad ja l~opmatult kahanevad suurused 9. Piirv¨a¨artusteoreemid 10. L~opmatult kahanevate suuruste v~ordlemine 11. Funktsiooni pidevuse m~oiste. Tarvilik ja piisav tingimus funktsiooni pidevuseks 12. Elementaarfu...