Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

"Mongei meetod" - 3 õppematerjali

thumbnail
2
odt

Nimetu

5.nädalal KT Kujutav geomeetria, loeng 2 Mongei meetod, sirge jälgpunktid, eriasendilised sirged, sirglõigu pikkus ja kaldenurgad, kahe sirge vastastikused asendid Sirgjoone jälgpunktid Sirge jälgpunktiks (jäljeks) nim sirgjoone ja ekraani lõikepunkti. Üldasendilisel sirgel on kolm jälge: *lõikepunkt põhiekraaniga -põhijälgpunkt *esiekraaniga- esijälgpunkt *külgjälg- külgjälgpunkt Põhijälg ja tema pealtvaade asetsevad põhiekraanil ja sirge pealtvaatel, põhijälje eestvaade aga x-teljel ja sirge eestvaatel. Esijälg ja tema eestvaade asetsevad esiekraanil ja sirge eestvaatel, esijälje pealtvaade aga x-teljel ja sirge pealtvaatel. Üldasendiline sirge Üldasendiline sirge ei ole paralleelne ühegi ekraaniga ega asetse sellel. Tunnus: kõik 3 sirge projektsiooni on kaldu ekraanide suhtes. Sirglõigu ristprojektsioonid on sirglõigus...

Varia → Kategoriseerimata
15 allalaadimist
thumbnail
2
odt

Kujutava geomeetria 2.loeng

Kujutav geomeetria, loeng 2 Mongei meetod, sirge jälgpunktid, eriasendilised sirged, sirglõigu pikkus ja kaldenurgad, kahe sirge vastastikused asendid Sirgjoone jälgpunktid Sirge jälgpunktiks (jäljeks) nim sirgjoone ja ekraani lõikepunkti. Üldasendilisel sirgel on kolm jälge: *lõikepunkt põhiekraaniga -põhijälgpunkt *esiekraaniga- esijälgpunkt *külgjälg- külgjälgpunkt Põhijälg ja tema pealtvaade asetsevad põhiekraanil ja sirge pealtvaatel, põhijälje eestvaade aga x-teljel ja sirge eestvaatel. Esijälg ja tema eestvaade asetsevad esiekraanil ja sirge eestvaatel, esijälje pealtvaade aga x-teljel ja sirge pealtvaatel. Üldasendiline sirge Üldasendiline sirge ei ole paralleelne ühegi ekraaniga ega asetse sellel. Tunnus: kõik 3 sirge projektsiooni on kaldu ekraanide suhtes. Sirglõigu ristprojektsioonid on sirglõigust enesest lühemad. Sirgjoone kaldenurgad ei esine üheski v...

Matemaatika → Kujutav geomeetria
63 allalaadimist
thumbnail
32
pdf

Kujutava geomeetria põhivara

Eesti Põllumajandusülikool Maaehituse instituut INSENERIGRAAFIKA Ainekursus MIT-7.307 Kujutava geomeetria põhivara Koostanud Harri Lille Keeletoimetaja Karin Rummo Tartu 2003 Sissejuhatus Kujutav geomeetria on see geomeetria eriharu, milles pitakse tasandil (joonisel) ruumiliste ülesannete lahendamise meetodeid ning positsiooni-, mte- ja konstruktiivsete ülesannete lahendamise vtteid. Positsiooniülesanneteks nimetatakse geomeetriliste kujundite vastastikuse kuuluvuse ja likumise määramist. Mteülesanded on geomeetriliste kujundite kauguste ja nende telise suuruse leidmine. Konstruktiivsete ülesannete sisuks on etteantud tingimustele vastavate geomeetriliste kujundite (nende kujutised joonisel) loomine. Kasutatud on järgmisi tähiseid: A,B,C,....; 1,2,3,... - ruumipunktid; a,b,c,.... - jooned; ,,,....,,...

Matemaatika → Kujutav geomeetria
447 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun