Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Лето - suvi (0)

1 Hindamata
Punktid
Suvi - Päike, soe õhk, head sõbrad, ujumine ja kõik muu, mida saab teha ainult suvel.

Lõik failist

Vasakule Paremale
Лето - suvi #1 Лето - suvi #2 Лето - suvi #3 Лето - suvi #4 Лето - suvi #5 Лето - suvi #6 Лето - suvi #7 Лето - suvi #8
Punktid 50 punkti Autor soovib selle materjali allalaadimise eest saada 50 punkti.
Leheküljed ~ 8 lehte Lehekülgede arv dokumendis
Aeg2012-02-04 Kuupäev, millal dokument üles laeti
Allalaadimisi 15 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor Liina Loit Õppematerjali autor
Tegemist on vene keeles tunni jaoks tehtud powerpoint esitlus teemal SUVI. Slaide: 8

Sarnased õppematerjalid

thumbnail
6
doc

11. klassi materjal matemaatikas

Aritmeetiline jada-Jada, mille iga liige alates teisest on võrdne eelneva liikme ja selle jada jaoks mingi kindla arvu summaga nimetatakse aritmeetiliseks jadaks. Seda kindlat arvu nimetatakse aritmeetilise arvu jadaks ja tähistatakse tähega d. an=a1+(n-1)d an+1=an+d » an+1-an=d sn= a1+an/2 x n või sn=2a1+(n-1)d/2 Geomeetriline jada- Jada, mille iga liige alates teisest on võrdne eelneva liikme ja antud jada jaoks mingi kindla arvu korrutisega nimetatakse geomeetriliseks jadaks. Seda kindlat arvu nimetatakse teguriks ja tähistatakse tähega q n-1 n an=a1 x q q=an+1/n sn=a1(q -1)/q-1 Lõpmatult kahaneva geomeetrilise jada summa- S=a1/1-q Arvu ,,A" nimetatakse jada ,,an" tõkestamatul kasvamisel ja tähistatakse sümboliga liman=A n lim1/n=0 Piirväärtus n (tõkestamatul kasvamisel) läheneb nullile. n Piirväärtust

Matemaatika
thumbnail
2
doc

Logaritmfunktsioon

Logaritmfunktsioon Logaritmfunktsiooniks nimetatakse funktsiooni y=logax , kus a>0 , a1 ja x>0 1) 01 y=log2X x|1/8|1/4|1/2|1| 2 | 4 | 8 | y| -3 |- 2 |- 1 |0| 1 | 2 | 3 | 1. Määramispiirkond X=(0;) 2. Nullkohad X0={1} 3. Negatiivsus, positiivsus piirkond X+=(1; ) X-=(0;1) 4. Ekstreemum kohad Xe=Ø 5. Kasvamis ja kahanemis vahemikud X=R X= Ø 6. Käänukohad X=Ø 7. Kumerus ja nõgusus piirkond Xk=(0;) Xn=Ø 8. Muutumispiirkond y=R

Matemaatika
thumbnail
1
doc

Eksponentfunktsioon

Eksponentfunktsioon Eksponentfunktsiooniks nimetatakse funktsiooni y=ax a>0 a0 1. Vaatleme juhtu kui a>0 x y=2 x | -3 | -2 | -1 | 0 | 1 | 2| 3 | y |1/8|1/4|1/2| 1 | 2 | 4 | 8 | Funktsiooni uurimine 1. Määramispiirkond X=R 2. Nullkohad X0 3. Positiivsus X+=R Negatiivsus X-=Ø 4. Ekstreemum kohad Xe= Ø 5. Kasvamine ja kahanemine X=R 6. Käänukohad Xk= Ø 7. Kumeruspiirkond X= Ø Nõgussuspiirkond X=R 8. Väärtuste hulk e. muutumis piirkond Y=(0;) 9. Eksponentfunktsiooni graafik läbib alati punkti 0 ja 1 (0;1)

Matemaatika
thumbnail
7
doc

Hulgateooria põhimõisted

Hulgateooria põhimõisted H ulk on baas ter min iks nii ma te ma at ikas kui ka arvutiteadus es . J ärgnevalt tuvu me hulgateoori a põhikonts epts ioonidega ja hulkadele rakendatavate operats ioonidega. P aradoks : a) H abemeaj aj a puzle- kapten käs ib rühma habemeaj aj ale aj ada habet kõikidel kompan ii liikmete l, eeldus el et rühma liik med ei tohi is e habet aj ada. O lles kõigi teis te habemed aj anud, kas vab talle endale habe. Enda habet ei s aa ta aj ada, s es t nii rikuks ta kapteni käs ku. Kui ta aga enda habet ei aj a, s iis ta peaks ühtpidi kapteni käs u järgi enda habet aj ama (kõikidel liik me tel). D ef: Hu lk A on k ollek ts ioon k orrek ts elt d ef in eeritu d ob jek tid es t, n ii et iga ob jek ti k orral k eh tib ük s järgevas t k ah es t võim alu s es t - x k u u lub h u lk a A , k irju tam e x A - x ei ku u lu h u lk a A , k irju tam e x A H ulki tähis tame s uurte tähtedega j a nende ele men te väik

Algebra ja analüütiline geomeetria
thumbnail
14
pptx

Anzelika Varum

26 1969 v v : v : v v v ' ` v 5 , Ø Good Bye, (1991) Ø (1993) Ø (1995 ) Ø (1998) Ø The Best (1999) Ø (2000) Ø , ! (2002) Ø (2003) Ø . (2003) 1997 , '' 9 1999 , . 2000 v ' ` v Ø ' '. 2003-2004 y : 1. () 2. 1996 3. 2 1997 4. 1999 ( ) 5. 1999 () 6. 3: 2003 7. 2003 ( ) - !

Vene keel
thumbnail
7
doc

Hulgateooria põhimõisted

Hu lgateooria põh im õis ted N B ! Värv ilin e tek s t arves tu s es . H ulk on baas ter min iks nii ma te ma at ikas kui ka arvutiteadus es . J ärgnevalt tuvu me hulgateoori a põhikonts epts ioonidega ja hulkadele rakendatavate operats ioonidega. P aradoks : a) H abemeaj aj a puzle- kapten käs ib rühma habemeaj aj ale aj ada habet kõikidel kompan ii liikmete l, eeldus el et rühma liik med ei tohi is e habet aj ada. O lles kõigi teis te habemed aj anud, kas vab talle endale habe. Enda habet ei s aa ta aj ada, s es t nii rikuks ta kapteni käs ku. Kui ta aga enda habet ei aj a, s iis ta peaks ühtpidi kapteni käs u järgi enda habet aj ama (kõikidel liik me tel). D ef: Hu lk A on k ollek ts ioon k orrek ts elt d ef in eeritu d ob jek tid es t, n ii et iga ob jek ti k orral k eh tib ük s järgevas t k ah es t võim alu s es t - x k u u lub h u lk a A , k irju tam e x A - x ei ku u lu h u lk a A , k irju tam e x A H ulki tähis t

Matemaatika ja statistika
thumbnail
3
doc

Bioloogia mõisted

1. Mükoriisa e. Seenjuur ­ on taimede js seente vaheline kooseluvorm 2. Gripi tekitaja ­ on RNA viirus 3. Spermatogenees - seemneraku areng spermatogoonist küpse spermini. 4. Ovogenees - munaraku areng ovogoonist küpse munarakuni. 5. autotroofsed organismid ­ organism, kes sünteesib elutegevuseks vajalikud orgaanilised ühendid väliskeskkonnast saadavatest anorgaanilistest ainetest. Selleks kasutatakse kas valguse energiat (fotosünteesija) või redoks resktsioonidel vabanevad keemilist energiat(kemosünteesija) Autotroofid toituvad mineraalainetest. 6. heterotroofid orgsnismid ­ orgsnism, kes saab oma elutegevuseks vajaliku energiat toidus sisalduva orgaanilise aine oksüdatsioonil. Heterotroofid toituvad orgaanilistest ainetest. 7. Populatsioon- ühisel territooriumil samal ajal elavad ühe liigi isendid 8. Assimilatsioon- orgsnismis toimuvate sünteesprotsesside kogum. 9. Dissimilatsioon ­ organismis toimuvate lagundamisprotsesside kogum. 10. Valkude süntees ­ toimub rib

Bioloogia
thumbnail
6
docx

Ruutvõrratused

2.4 RUUTVÕRRATUS Ühe muutujaga ruutvõrratuse üldkuju on ax2 + bx + c > 0, kus a 0. Märgi > asemel võib võrratuses olla ka üks märkidest <, , . Ruutvõrratuse lahendamiseks 1) lahendame ruutvõrrandi ax2 + bx + c = 0; 2) skitseerime parabooli y = ax2 + bx + c; 3) leiame jooniselt, kus funktsiooni väärtused positiivsed, kus negatiivsed. Ruutfunktsiooni y = ax2 + bx + c graafik on parabool. Kui a > 0, siis avaneb parabool ülespoole. Kui a < 0, siis avaneb parabool allapoole. Kui lahendame ruutvõrrandi ax2 + bx + c = 0, siis on kolm erinevat võimalust: A) Diskriminant D = b2 ­ 4ac > 0. Parabool lõikab sel juhul x ­ telge kahes erinevas punktis. ax2 + bx + c > 0 L = (­ ;x1) (x2; ) ax2 + bx + c >0 L = (x1; x2) 1 B) Kui diskriminant D = 0, siis on ruutvõrrandil kaks võrdset reaalarvulist lahendid ning parabool puudutab x ­

Matemaatika




Meedia

Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun