Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Stereomeetria (0)

1 Hindamata
Punktid

Lõik failist





Stereomeetria
Kera
Kera pindala võrdub neljakordse suurringi pindalaga.
S=4π R
Stereomeetria #1 Stereomeetria #2 Stereomeetria #3
Punktid Tasuta Faili alla laadimine on tasuta
Leheküljed ~ 3 lehte Lehekülgede arv dokumendis
Aeg2023-03-06 Kuupäev, millal dokument üles laeti
Allalaadimisi 0 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor 390649 Õppematerjali autor

Sarnased õppematerjalid

thumbnail
34
pdf

Geomeetria stereomeetria

STEREOMEETRIA Risttahukas S  2ab  bc  ac  c V  S p  H  abc d d  a2  b2  c2 b a Kuup S  6a 2 d a V  a3 d a 3 a a Püstprisma S t  2S p  S k H= l Kü lg pindala S k  P  H V  Sp  H A B C Kaldprisma S t  2S p  S k Ris

Geomeetria
thumbnail
19
docx

Pi põhikooli matemaatikas

Kallavere Keskkool Jana Smirnova 8.klass PI PÕHIKOOLI MATEMAATIKAS Uurimistöö Juhendajad: Maardu 2012 SISSEJUHATUS Arv, mida tähistatakse kreeka tähega , on üks tuntumaid arve matemaatikas ja sellise suuruse olemasolust sai inimkond aimu juba väga ammuses minevikus. Praeguseks on arvutatud üle 6000000000 komakoha. ligikaudne väärtus on 3,14. Käesolevas töös on uuritud kasutatavust põhikooli matemaatikas. Autor on uurimistöö teemast huvitatud, sest tahtis rohkem tutvuda : mis arv see õieti on ja kus ning milleks seda kasutatakse. Materjali koostamisel on toetutud isiklikele kogemustele ning kasutatud erialaseid õpikuid ja internetimaterjale. Uurimistöö on kirjutatud 20 lehel, sisaldab 7 joonist ja 1 diagrammi. Kirjanduse loetelus on 12 nimetust. Sisaldab kokkuvõtet ja sissejuhatust. Töö koosneb kolmest peatükist. Esimeses peatükis saab ülevaate ajaloolisest arengust:

Matemaatika
thumbnail
43
pdf

Keskkooli lõpueksam (2008)

2007. aasta matemaatika riigieksami ülesanded koos lahenduste ja kommentaaridega 2 1. ÜLESANNE (5 punkti) Ülesannete tekstid 1 5x 1 I Antud on avaldis 2 , kus x 0 ja x . x 25 x 2 x 0 5 1) Lihtsustage see avaldis. 3 2) Arvutage avaldise väärtus, kui x 2 . Vastus andke täpsusega 10 2. 2 x 2 (9 x 2 x 0 ) 1 II Antud on avaldis , kus x 0 ja x . 1 3x 3 1)

Algebra ja analüütiline geomeetria
thumbnail
63
doc

Põhikooli matemaatika kordamine

Ruutfunktsioon Sissejuhatav kordamine 1. Teosta tehted. Vastustes vabane negatiivsetest astendajatest. 3 1 2 3 1 a) 2 a b c 3 Lahendus: ; 1 4 2 s 3 t b) 4 5 3 4 s t Lahendus: . 2. Lihtsusta avaldis. a) xy(x + 3y) + (x + y)(x2 ­ 2xy ­ y2) Lahendus: xy(x + 3y) + (x + y)(x2 ­ 2xy ­ y2) = = x2y + 3xy2 + x3 ­ 2x2y ­ xy2 + x2y ­ 2xy2 ­ y3 = = x 3 ­ y3 = = (x ­ y)(x2 + xy + y2) b) (3a ­ 2)2 + (2 + 3a)(2 ­ 3a) Lahendus: (3a ­ 2)2 + (2 + 3a)(2 ­ 3a) = 9a2 ­ 12a + 4 + 4 ­ 9a2 = = 8 ­ 12a 3. Lahenda võrrand. a) 24x2 + 5x ­ 1 ­ (24x2 ­ 6x ­ 12x + 3) = 111 Lahendus: 24x2 + 5x ­ 1 ­ (24x2 ­ 6x ­ 12x + 3) = 111; 24x2 + 5x ­ 1 ­ 24x2 + 6x

Matemaatika
thumbnail
55
pdf

Matemaatiline analüüs II loengukonspekt

MATEMAATLINE ANALÜÜS II 1. KORDSED INTEGRAALID Kordame kõigepealt mõningaid teemasid Matemaatlise analüüsi I osast. 1.1 Kahe muutuja funktsioonid Kui Tasndi R 2 mingi piirkonna D igale punktile x, y D seatakse ühesel viisil vastavusse arv z, siis öeldakse, et piirkonnas D on määratud kahe muutuja funktsioon z f x, y . Piirkoda D nimetataksefunktsiooni f määramispiirkonnaks. See on mingi piirkond xy-tasandil. Näide 1. Poolsfääri z 1 x2 y 2 määramispiirkonnaks on ring x 2 y2 1. Funktsiooni z ln x y määramispiirkonnaks on pooltasand y x (sirgest y x ülespoole jääv tasandi osa: vaata joonist). Kahe muutja funktsioon ise esitab pinda xyz-ruumis (ruumis R 3 ). Näide 2. Funktsiooni z x2 y 2 graafikuks on pöördparaboloid (vaata allpool olevat joonist) Kahe muutuja funktsiooni f nivoojoonteks nimetatakse jooni f x, y c Näide 3. Tüüpiline näide nivoojoo

Matemaatiline analüüs ii
thumbnail
54
doc

Valemid ja mõisted

MATEMAATIKA TÄIENDÕPE VALEMID JA MÕISTED KOOSTANUD LEA PALLAS 1 2 SAATEKS Käesolev trükis sisaldab koolimatemaatika valemeid, lauseid, reegleid ja muid seoseid, mille tundmine on vajalik kõrgema matemaatika ülesannete lahendamisel. Kogumikus on ka mõned kõrgema matemaatika õppimisel vajalikud mõisted, mida koolimatemaatika kursuses ei käsitletud.. 3 KREEKA TÄHESTIK - alfa - nüü - beeta - ksii - gamma - omikron - delta - pii - epsilon - roo - dzeeta - sigma - eeta - tau - teeta - üpsilon - ioota - fii - kapa - hii - lambda - psii - müü - oomega

Matemaatika
thumbnail
108
doc

MATEMAATIKA TÄIENDÕPE: Valemid

MATEMAATIKA TÄIENDÕPE VALEMID JA MÕISTED KOOSTANUD LEA PALLAS 1 2 SAATEKS Käesolev trükis sisaldab koolimatemaatika valemeid, lauseid, reegleid ja muid seoseid, mille tundmine on vajalik kõrgema matemaatika ülesannete lahendamisel. Kogumikus on ka mõned kõrgema matemaatika õppimisel vajalikud mõisted, mida koolimatemaatika kursuses ei käsitletud.. 3 KREEKA TÄHESTIK Α α  alfa Ν ν  nüü Β β  beeta Ξ ξ  ksii Γ γ  gamma Ο ο  omikron Δ δ  delta Π π  pii Ε ε  epsilon Ρ ρ  roo Ζ ζ  dzeeta Σ σ  sigma Η η  eeta Τ τ  tau Θ θ  teeta Υ υ  üpsilon Ι ι  ioota Φ φ  fii Κ κ  kap

Algebra I
thumbnail
8
doc

12. klass matemaatika kordamine

1. Arvud, mis väljendavad risttahuka mõõtmeid moodustavad geomeetrilise jada. Risttahuka põhja pindala on 108 m² ja täispindala 888 m². Leia risttahuka mõõtmed. 2. Urnis on 5 musta, 7 kollast ja 4 punast palli. Leia tõenäosus, et juhuslikult võetud kolme palli hulgas on. 1) vähemalt 2 kollast palli; 2) Kõik erinevat värvi pallid; 3) kõik ühtevärvi pallid. 3. Leia kõik reaalarvude paarid (x;y), mis rahuldavad võrrandit 2 x +1 = 4 y 2 +1 ja võrratust 2 x 2 y . 4. Kahe positiivse arvu vahe moodustab 1/19 nende kuupide vahest, nend4e korrutis on aga ½ võrra väiksem nende ruutude poolsummast. Leia need arvud. 5. Lahenda võrrand 3sin 9 + 3 = 3 vahemikus (-2; 2). 6. Võrdkülgsesse kolmnurka küljega a on kujundatud teine võrdkülgne kolmnurk, mille tipud asuvad esimese kolmnurga külgedel jaotades need suhtes 1:2. Leia väiksema kolmnurga pindala. 7. Koonusekujulise veiniklaasi kõrgus on h

Matemaatika




Meedia

Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun