Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
Ega pea pole prügikast! Tõsta enda õppeedukust ja õpi targalt. Telli VIP ja lae alla päris inimeste tehtu õppematerjale LOE EDASI Sulge

"diferentseeruv-funktsioon" - 126 õppematerjali

thumbnail
6
docx

Vähendatud programmi teooria 2

Matemaatiline analüüs I (Vähendatud programmi teooria vastused) Lokaalse ekstreemumi mõiste. Öeldakse, et funktsioonil f on punktis x1 lokaalne maksimum, kui 1. funktsioon f on määratud punkti x1 mingis ümbruses (x1 - , x1 + ); 2. iga x (x1 - , x1 + ) korral kehtib võrratus f(x) f(x1). Öeldakse, et funktsioonil f on punktis x1 lokaalne miinimum, kui 1. funktsioon f on määratud punkti x1 mingis ¨umbruses (x1 - , x1 + ); 2. iga x (x1 - , x1 + ) korral kehtib v~orratus f(x) f(x1). Funktsiooni lokaalseid maksimume ja miinimume nimetatakse selle funktsiooni lokaalseteks ekstreemumiteks. Fermat' lemma. Kui funktsioonil f on punktis x1 lokaalne ekstreemum ja funktsioon on diferentseeruv selles punktis, siis f(x1) = 0. Rolle'i teoreem. Kui funktsioon f on lõigul [a, b] pidev, vahemikus (a, b) diferentseeruv ja rahuldab tingimust f(a) = f(b), siis leidub vahemikus (a, b) vähemalt üks punkt c nii, et f(c) = 0. Rolle'i teoreemil on lihtne g...

Matemaatika → Matemaatiline analüüs
131 allalaadimist
thumbnail
2
docx

Matemaatilise analüüsi teoreeme ja definitsioone

Def1. Piirväärtust limx 0y/x nimetatakse funktsiooni tuletiseks kohal x. T1. Kui funktsioonil on olemas tuletis kohal x, siis on funktsioon pidev sellel kohal. T2. Kui on olemas tuletised f' (x ) ja g' (x ), siis on olemas ka tuletised: a) [f(x)+g(x)]', b) [f(x)-g(x)]', c) [f(x)g(x)]', d) [f(x)/g(x)]',(kui g(x)0), kusjuures kehtivad järgmised seosed: a) [f(x)+ g(x)]' =f'(x)+g'(x), b) [f(x)-g(x)]' =f' (x)-g' (x), c) [f(x)g (x)]' = f'(x)g (x)+f(x)g '(x), d) [f(x)/g(x)]'=[f'(x)g(x)-f(x)g'(x)]/g2(x) , (kui g(x) 0). T3. Kui funktsioonil on olemas tuletis kohal x ja funktsioonil f on olemas tuletis vastaval kohal u = (x ), siis on ka liitfunktsioonil F olemas tuletis kohal x, kusjuures kehtib seos F' (x ) = f' (u)' (x ). T4. Kui piirkonnas X rangelt monotoonsel ja pideval funktsioonil f on kohal x olemas nullist erinev tuletis f'(x ), siis on pöördfunktsioonil olemas tuletis '(y) vastaval kohal y = f(x), kusjuures kehtib seos ' (y) =1/F'(x...

Matemaatika → Matemaatika
32 allalaadimist
thumbnail
10
docx

Kordamisküsimusi 3. teema kohta - Teooriatöö II

Kordamisküsimusi 3. teema kohta 1. Defineerida funktsiooni tuletis. Mis on diferentseeruv funktsioon ja diferentseerimine? Funktsiooni f tuletiseks punktis a nimetatakse järgmist suurust: f ( x )−f (a) f ' ( a )=lim x→ a x−a Kui funktsioon f omab punktis a lõplikku tuletist, siis öeldakse et ta on selles punktis diferentseeruv. Tuletise arvutamist nimetatakse diferentseerimiseks. 2. Esitada tuletise valem funktsiooni muudu ja argumendi muudu kaudu. Tuletist defineeriva piirväärtuse võib kirja panna ka argumendi muudu ja funktsiooni muudu kaudu. Olgu nii nagu ennegi: ∆x = x − a → argumendi muut kohal a , ∆y = f(x) − f(a) →funktsiooni muut kohal a . Siis f ( x )−f ( a) ∆y ∆y f ' ( a )=lim =lim =lim x→ a x−a x→a ∆ x x→ 0 ∆ x 3. Sõnastada j...

Matemaatika → Matemaatika analüüs i
5 allalaadimist
thumbnail
32
pdf

Matemaatilise analüüsi kollokvium nr.2

1. Näidata, et xϵRn korral rahuldab normi aksioome 2. puudu  || x ||1:  k | xk | 3. Näidata, et xϵRn korral rahuldab normi aksioome Normiks vektorruumis V nimetatakse reeglit, mis igale vektorile seab vastavusse skalaari , kusjuures on täidetud järgnevad tingimused: 1). 2). 3). 4. Tõestada üks segatuletiste võrdsuse piisav tingimus. 5. Näidata, et diferentseeruv kahe-või mitmemuutuja funktsioon on pidev. 6. Näidata, et kahe-või mitmemuutuja funktsioon on diferentseeruv, kui tema osatuletised on pidevad. 7.Liitfunktsiooni tuletise ja osatuletise valemid. Üks neist tuletada. Kui funktsioonid xi = xi (t) (i = 1; … ; n) on diferentseeruvad punktis t ja funktsioon u = f (x) on diferentseeruv punktis P(x1(t);…..; xn(t)), siis liitfunktsiooni f (x1(t); … ; xn(t)) = f (x(t)) = u(t) tuletis punktis t avaldub kujul Kui funktsioonid x = x(u; v) ja y = y(u; v) on diferentseeruvad punktis P(u; v) ning funktsioon ...

Matemaatika → Matemaatiline analüüs 2
78 allalaadimist
thumbnail
5
docx

KÕIK Kollokvium II kohta. 1.10-1.16

1.10 Funktsiooni tuletis DEF 1.Funktsiooni y=f(x) tuletiseks kohal x nim. funktsiooni y=f(x) muudu y ja argumendi muudu x suhte piirväärtust, kui argumendi muut läheneb nullile. f´(x)=limy/x, piirprotsessis x->0 DEF 2. Kui funktsioonil f(x) on tuletis kohal x, siis öeldakse, et funktsioon on diferentseeruv punktis x. f´(x0) <->f(x) D(x0) DEF 3. Funktsiooni y=f(x) parempoolseks tuletiseks kohal x nim. suurust f´(x+)=limy/x, piirprotsessis x->0+ DEF 4. Funktsiooni y=f(x) vasakpoolseks tuletiseks kohal x nim. suurust f´(x-)=limy/x, piirprotsessis x->0- Funktsiooni tuletis: Lause 1. Funktsiooni f(x) diferentseeruvusest punktis x järeldub selle funktsiooni pidevus punktis x,st Tõestus. Funktsiooni diferentseeruvus punktis x tähendab, et . Kuna igas mingis punktis on piirväärtust omav suurus selle punkti teatud ümbruses esitatav piirväärtuse ja lõpmata väikese suuruse summana, siis , kusjuures . Seos on esitatav ka kujul , kusjuur...

Matemaatika → Matemaatiline analüüs
78 allalaadimist
thumbnail
12
pdf

Funktsiooni tuletis - loeng 5

Funktsiooni tuletis Rühmatöö Sirgjoonelise liikumise teepikkus s (meetites) sõltub liikumise ajast t (sekundites) järgmiselt: s = 0,3t 2 + t Leida funktsiooni muut. Mida võimaldab see valem arvutada? Leitud valemi abil arvutada ajavahemikul 3 t 5 läbitud teepikkus. Leida funktsiooni muudu ja argumendi muudu suhe. Mida võimaldab see valem arvutada? Leitud valemi abil arvutada keskmine kiirus lõigus 3 t 5 s Leida piirväärtus lim Mida võimaldab see valem arvutada? t 0 t Leitud valemi abil arvutada hetkeline kiirus momendil t = 5 2 Diferentsiaalarvutuse rajajad Isaac Newton Gottfried Wilhelm Leibniz 1643-1727 1646-1716 3 Liikumise kiirus Punkti liikumise seadus: s = f (t) 0 (t = 0) Ajamo...

Matemaatika → Algebra I
51 allalaadimist
thumbnail
11
doc

Kollokvium II

1. Tuletise lineaarsuse tõestus, st näidata, et saame konstandi tuletise märgi alt välja tuua ning summa tuletis on tuletiste summa. Lause: Kui funktsioonid f(x) ja g(x) on diferentseeruvad punktis x ja cR on konstant, siis selles punktis on diferentseeruv ka funktsioon cf(x) Tõestus:Korrutise tuletisest y'=f'(x)g(x)+f(x)g'(x) lähtuvalt, kui cR on konstant, siis y=c*f(x) tuletis on y'=f(x)*c'+f '(x)*c=0*f(x)+c*f '(x)=c*f '(x) Lause: Kui funktsioonid f(x) ja g(x) on diferentseeruvad punktis x ja cR on konstant, siis selles punktis on diferentseeruv ka funktsioon y=f(x)+g(x) Tõestus: y=f(x)+g(x) esmalt, toimides sammhaaval, tehes eraldi tehetena komponendid, saame kolmandana saame aga, et 2).*Korrutise tuletise valemi tuletus: f(x) f'(x); f'(x): ning g'(x)= siis *Jagatise tuletis...

Matemaatika → Matemaatika analüüs i
189 allalaadimist
thumbnail
8
docx

Matemaatiline analüüs KT2

20. Esitada funktsiooni muut diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? Tõestada ei ole vaja. Funktsiooni muudu peaosa ja jääkliige. Olgu antud funktsioon, mis on diferentseeruv punktis a. Eeldame, et f (a)0. Valemist näeme, et funktsiooni muut y koosneb kahest liidetavast, millest esimene on diferentsiaal dy = f(a)x ja teine on . Mõlemad liidetavad on lõpmatult kahanevad protsessis x 0. Näeme, et esimene liidetav, so diferentsiaal dy on sama järku lõpmatult kahanev suurus kui x ja teine liidetav on kõrgemat järku lõpmatult kahanev suurus x suhtes. Järelikult väikese x korral hakkab diferentsiaal funktsiooni muudu avaldises domineerima. Seetõttu võime lugeda diferentsiaali dy funktsiooni muudu peaosaks. Jääkliikme võib väikese x korral funktsiooni muudu avaldises ära jätta. Kehtib ligikaudne valem y dy kui x 0 . 21. FUNKTSIOONI LOKAALSETE EKST...

Matemaatika → Matemaatiline analüüs
231 allalaadimist
thumbnail
16
pdf

Teooria 2. kollokvium

Teooria 2. kollokvium 1.Funktsiooni diferentseeruvuse geomeetriline tõlgendus 2. Funktsiooni kõrgemat järku tuletised. Kui funktsioonil 𝑓′ eksisteerib tuletis punktis a, siis seda tuletist nimetatakse funktsiooni 𝑓 teist järku tuletiseks kohal a. 𝑓′ (𝑥)−𝑓′ (𝑎) 𝑓 ′′ (𝑎) ≔ [𝑓 ′ (𝑎)]′𝑥=𝑎 = lim𝑥→𝑎 𝑥−𝑎 Kui funktsioonil 𝑓 (𝑛−1) eksisteerib tuletis punktis a, siis seda tuletist nimetatakse funktsiooni 𝑓 n- järku tuletiseks kohal a. ′ 𝑓 (𝑛−1) (𝑥) − 𝑓 (𝑛−1) (𝑎) 𝑓 (𝑛) (𝑎) ≔ [𝑓 (𝑛−1) (𝑎)] 𝑥=𝑎 = lim 𝑥→𝑎 𝑥−𝑎 3. Funktsiooni diferentsiaal ja selle omadused. Korgemat järku diferentsa...

Matemaatika → Matemaatika
15 allalaadimist
thumbnail
6
docx

Mat. Analüüs I ; teooria II osa

Mat teooria II 1. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? Loetleda diferentsiaali omadused. 2. Olgu antud funktsioon, mis diferentseerub punktis a ja eeldame, et Teades, et Nii me näitasime, et Tähistades ja vahe järgmiselt Kehtib võrratus: Et avaldada väärtust kaudu peame kõigepealt avaldama suhte: Korrutades saadud avaldist saame: kus Nüüd näemegi, et koosneb kahest liidetavast, mis kahanevad piirprotsessis Võrdleme neid suuruseid suhtes: Lisaks kehtib veel: · Diferentsiaali omadused: 1. 2. 3. 4. 5. 3. Funktsiooni lokaalsete ekstreemumite definitsioonid. Sõnastada Fermat' lemma. · Funktsiooni lokaalne maksimum ­ Funktsioonil on punktis lokaalne maksimum, kui: a) Funktsioon on määratud mingis ümbruses ( ...

Matemaatika → Matemaatiline analüüs i
17 allalaadimist
thumbnail
10
docx

Matemaatiline analüüs I

1. Sõnastada ja tõestada piirväärtusteoreem kahe funktsiooni summa piirväärtuse arvutamiseks protsessis x +. Teoreem (1): Kahe, kolme, üldiselt lõpliku hulga muutuvate suuruste algebralise summa piirväärtus võrdub nende muutuvate suuruste piirväärtuste algebralise summaga. lim(u1 + u2 +....) = lim u1 + lim u2 + ... Tõestus: Tõestan teoreemi kahe funktsiooni liitmise korral. Olgu lim f(x) = A ja lim g(x) = B (Vaatlen mõlemaid protsesse piirprotsessis x +) Teoreem (1) põhjal võib kirjutada lim x + f(x) + g(x) = lim x + f(x) + lim x + g(x) Eeldame, et liidetavaid on lõplik arv. Tugineb lvs omadusele. Lvs (lõpmata väike suurus) omadus: lim(x+) f(x) = A, kui iga > 0 korral leidub selline arv N, et iga x > N ko...

Matemaatika → Matemaatiline analüüs
354 allalaadimist
thumbnail
82
docx

Matemaatiline analüüs I kordamine eksamiks

1. Reaalarvud Reaalarvude hulga R kirjeldamisel peab oskama välja tuua järgmist: 1) Q ⊂ R – ratsionaalarvude hulk sisaldub reaalarvude hulgas 2) Aritmeetika (tehted reaalarvudega) ja järjestus Aritmeetika. Eeldame, et hulgas R on defineeritud reaalarvude liitmine ja korrutamine järgmiste omadustega: (A1) a + b = b + a kõikide a,b € R korral (liitmise kommutatiivsus) (A2) (a + b)+ c =a +(b + c) kõikide a,b,c € R korral (liitmise assotsiatiivsus) (A3) b + 0 = b iga b € R puhul (nullelemendi olemasolu) (A4) iga b € R puhul leidub -b € R korral omadusega b + (-b) = 0 (vastandelemendi olemasolu) (M1) ab = ba kõikide a,b € R korral (korrutamise kommutatiivsus) (M2) (ab) c = a (bc) kõikide a,b,c € R korral (korrutamise assotsiatiivsus) (M3) 1b = b iga b € R puhul (ühikelemendi olemasolu) (M4) iga b € R {0} puhul leidub b-1 € R omadusega bb-1=1 (pöördelemendi olemasolu) ...

Matemaatika → Matemaatiline analüüs
54 allalaadimist
thumbnail
16
doc

Matemaatiline analüüs II, 1. kollokvium

Contents Contents...................................................................................................................... 1 4.Mitme muutuja funktsiooni piirväärtus. Pidevus........................................................ 5 7) Liitfunktsiooni tuletise ja osatuletise valemid. Uks neist tuletada.............................. 6 8) Defineerida funktsiooni tuletis etteantud suunas. Tuletada suunatuletise valem funktsiooni osatuletiste kaudu. Gradient. Telgedesuunalised tuletised. Suunatuletise tõlgendus..................................................................................................................... 9 10. Olgu mitmemuutuja funktsioon u = f (x) antud ilmutamata kujul võrrandiga F(x,u)= 0. Tuletada valem funktsiooni f osatuletiste jaoks funktsiooni F osatuletiste kaudu. Valem tuletada kas kahe muutuja juhul (x = (x, y) R2) või üldjuhul (x Rn)...........11 12.Tuletada Taylori valem kahe- või mitmem...

Matemaatika → Matemaatiline analüüs 2
853 allalaadimist
thumbnail
4
pdf

Matemaatiline analüüs I teine teooria

  Def:Funktsiooni  y=f(x) tuletiseks kohal x nimetatakse funktsiooni y=f(x) muudu Δy ja argumendi muudu  Δx  suhte piirväärtust, kui argumendi  muut läheneb nullile.  Def:​ Kui funktsioonil f(x) on tuletis punktis x, siis öeldakse, et funktsioon on ​ diferentseeruv​  punktis x.  Def:  Geomeetriliselt  võib  funktsiooni  y=f(x)  ​ interpreteerida  kui  selle  funktsiooni  graafikule  punktis  (x;   f(x))  konstrueeritud  tõusunurga  tangensit.   Def: ​ Funktsiooni y=f(x) ​parempoolseks tuletiseks​  kohal x nimetatakse suurust  f ´(x +) = lim Δy Δx  Δ→0+ Δy Def: ​ Funktsiooni y=f(x) ​ vasakpoolseks tuletiseks​  kohal x nimetatakse suurust  ...

Matemaatika → Matemaatiline analüüs
42 allalaadimist
thumbnail
3
doc

Matemaatilised mõisted ja definitsioonid

Matemaatika põhimõisted ja - definitsioonid 1. Funktsioon- kui muutuva suuruse x igale väärtusele, mis kuulub tema muutumispiirkonda, vastab teise suuruse y üks kindel väärtus, siis öeldakse, et y on x funktsioon. 2. Elementaarne põhifunktsioon- elementaarseteks põhifunktsioonideks nim. järgmisi analüütiliselt antud funktsioone: konstantne funktsioon y = c; astmefunktsioon y = xa ; eksponentfunktsioon y = ax , kus a on ühest erinev pos. arv; logaritmfunktsioon ; trigonomeetrilised funktsioonid; arkusfunktsioonid; 3. Elementaarfunktsioon- funktsioon, mis saadakse põhielementaarfunktsioonidest lõpliku arvu aritmeetiliste tehete ja liitfunktsioonide moodustamise tulemusena. 4. Tõkestatud funktsioon- funktsiooni f(x) nim. tõkestatuks piirkonnas A, kui leidub selline reaalarv k, nii et | f(x) | <= k iga x A korral. 5. Perioodiline funktsioon- funktsiooni f(x) nim. perioodiliseks, kui leidub selline nullist eri...

Matemaatika → Matemaatiline analüüs
253 allalaadimist
thumbnail
1
doc

Matemaatiline analüüs 1 (2 teooria töö)

KT2 Pöördfunktsiooni tuletis on antud funktiooni tuletise pöördväärtus. Kui l~oigul [a; b] pideval ja rangelt monotoonsel funktsioonil y =f(x) leidub kohal a nullist erinev tuletis, siis pöördfunktsioonil x = g(y) leidub tuletis kohal b = f(a), kusjuures g '(b)=1/f ' (a) Param kujul f tuletis: kui f y=f(x) on antud parameetrilisel kujul x(t)=(t); y(t)=(t) , t=[a,b], kusjuures f-id (t) ja (t) on diferentseeruvad vahemikus (a,b) ja (t) on rangelt monotoonne lõigul[a,b] ning (t)0 (t=(a,b), siis y '=(t)/(t) F f(x) n-järku tuletiseks nim f-i f(x) (n-1)-järku tuletise tuletits, st fn(x)=(fn-1(x)) ' F-i y=f(x) n-järku diferentsiaaliks nim diferentsiaali selle f-i n-1 järku diferentsiaalist dny=d(dn-1y) Funktsiooni y = f(x) nimetatakse rangelt kasvavaks punktis x, kui leidub selline positiivne arv , et suvaliste x1 (x-,x) ja x2 (x; x + ) korral f(x1) < f(x) < f(x2). Kui funktsioon on rangelt kasvav punktis x, siis leidub selline 0, et 0|x| --y...

Matemaatika → Matemaatiline analüüs
261 allalaadimist
thumbnail
23
docx

MATEMAATILINE ANALÜÜS TÖÖ VASTUSED

1. · Arvtelje mõiste ­ Arvteljeks kutsume sirget, millel on positiivne suund, määratud nullpunkt ja pikkusühik. Arvteljega on võimalik seada vastavusse kõik reaalarvud, kus ühele reaalarvule vastab ainult üks arvtelje punkt. · Reaalarvu absoluutväärtus ­ · Absoluutväärtuse omadused · Reaalarvu lõpmatuseks nimetame suvalist vahemikku (a-,a+), kus >0 on ümbruse raadius · Reaalarvu vasakpoolseks lõpmatuseks nimetame suvalist vahemikku (a-,a], kus >0 · Reaalarvu parempoolseks lõpmatuseks nimetame suvalist vahemikku [a, a+), kus >0 · Suuruse lõpmatus ümbruseks nimetame hulka (M,), kus M>0 · Suuruse miinus lõpmatus ümbruses nimetame hulka (-,-M), kus M>0 · Hulka A nimetame tõkestatud hulgaks, kui A on määratud lõplikus vahemikus (a,b) 2. · Jääv suurus on suurus mille väärtus ei muutu · Muutuv suurus on suurus, millele võib omastada erinevaid väärtuseid ...

Matemaatika → Matemaatika analüüs i
104 allalaadimist
thumbnail
4
doc

Matemaatiline analüüs - teooria spikker

27. Trigonomeetriliste avaldiste integreerimine. 28. Määratud integraal ja selle omadused. 1. Funktsioon. Määramispiirkond, väärtuste hulk. Me vaatleme integraali (sinx,cosx)dx Keskväärtusteoreem (tõestusega). Pöördfunktsioon. 1. Universaalne asendus tan x/2=t Olgu y=f(x) pidev lõigul [a,b] Jaotame lõigu n osaks punktidega 2. Funktsiooni piirväärtus. Teoreemid piirväärtuste x0=a, x1, x2,..,xn=b kohta (tõestusega). J={x0,x1,..,xn} lõigu [a,b] jaotus 3. Lõpmatult vähenevad suurused ja nende järk. Igal lõigukesel xi=xi-xi-1 i=1,2,..,n võtame p...

Matemaatika → Matemaatiline analüüs
973 allalaadimist
thumbnail
2
odt

Matemaatiline analüüs I, II kollokviumi spikker

1. Funktsiooni diferentseeruvuse geomeetriline tõlgendus. 11. Kumerus, nõgusus, käänupunktid. Seos teist järku tuletisega. Funktsiooni diferentsiaal on kõverjoonele y = f(x) tõmmatud puutuja ordinaadi muut, mis vastab Oeldakse, et funktsiooni f(x) graafik on kumer punktis a (tapsemini punktis (a, f(a))), kui leidub punkti a argumendi numbrile x=dx. selline -umbrus, et funktsiooni f(x) graafik on argumendi x väärtustel ümbrusest (a - , a + ) allpool 2. Funktsiooni kõrgemat järku tuletised. (tapsemini, mitte ulalpool) puutujat, mis on tõmmatud punktis (a, f(a)) funktsiooni graafikule. Oeldakse, et funktsiooni f(x) graafik on kumer hu...

Matemaatika → Matemaatiline analüüs
33 allalaadimist
thumbnail
22
doc

Matemaatiline analüüs I - kordamine eksamiks (ainekava järgi koostatud konspekt)

Ainekava eksamiks ,, Matemaatiline analüüs I " 2007 ­ 2008 kevadsemester 1. Naturaalarvud, täisarvud, ratsionaalarvud, irratsionaalarvud, reaalarvud. Naturaalarvud ­ arvud, mis saadakse loendamise teel, tähistatakse: IN (1, 2, 3, 4, 5, 6, ..., ) Täisarvud ­ kõik naturaalarvud ja nende vastandarvud ning lisaks 0, tähistatakse Z m Ratsionaalarvud ­ on sellised reaalarvud, mida saab esitada kahe täisarvu m ja n jagatisena nii et n n 0 . Igal ratsionaalarvul on ka lõpmatu kümnendmurdarendus ja see on alati perioodiline, tähistatakse Q Irratsionaalarvud ­ mitteperioodilised lõpmatud kümnendmurrud. Tähistus I Reaalarvud ­ hulk R, koosneb k...

Matemaatika → Matemaatiline analüüs i
776 allalaadimist
thumbnail
2
docx

Kollokvium II

1.10 Funktsiooni tuletis DEF 1.Funktsiooni y=f(x) tuletiseks kohal x nim. funktsiooni y=f(x) muudu y ja argumendi muudu x suhte piirväärtust, kui argumendi muut läheneb nullile. f´(x)=limy/x, piirprotsessis x->0 DEF 2. Kui funktsioonil f(x) on tuletis kohal x, siis öeldakse, et funktsioon on diferentseeruv punktis x. f´(x0) <->f(x) D(x0) DEF 3. Funktsiooni y=f(x) parempoolseks tuletiseks kohal x nim. suurust f´(x+)=limy/x, piirprotsessis x->0+ DEF 4. Funktsiooni y=f(x) vasakpoolseks tuletiseks kohal x nim. suurust f´(x-)=limy/x, piirprotsessis x->0- 1.11 Liitfunktsiooni tuletis. Pöördfunktsiooni tuletis. Parameetriliselt esitatud funktsiooni tuletis. Ilmutamata funktsiooni tuletis. Logaritmiline diferentseerimine. Vaata näiteid vihikust! 1.12 Põhiliste elementaarfunktsioonide tuletised. 1.13 Kõrgemat järku tuletised DEF 1. Kui funktsioonil f´(x) eksisteerib tuletis, siis seda tuletist nim. funktsiooni y=f(x) teiseks tuletiseks ehk ...

Matemaatika → Matemaatiline analüüs
143 allalaadimist
thumbnail
7
pdf

Vähendatud programmi (A) TEINE teooriatöö

LIISI KINK 10 MATEMAATILINE ANALÜÜS I Teooria töö 2 18) Esitada funktsiooni muut diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? Tõestada ei ole vaja. = + , kus = Mõlemad liidetavad on lõpmatult kahanevad protsessis 0. Diferentsiaal on sama järku lõpmatult kahanev suurus kui ja teine liidetav on kõrgemat järku lõpmatult kahanev suurus suhtes. Kehtib ligikaudne valem kui 0. 19) Funktsiooni lokaalsete ekstreemumite definitsioonid. Sõnastada Fermat' lemma (tõestust ei küsi). Öeldakse, et funktsioonil on punktis lokaal...

Matemaatika → Matemaatika analüüs i
100 allalaadimist
thumbnail
16
docx

J. Kurvitsa teooria vastused

1. Kollokvium 1. Hulga mõiste. Järjestatud hulk. Tehted hulkadega. Arvuhulgad. Teoreem. Ei leidu ratsionaalarvu, mille ruut on 2 (tõestada). Tõkestatud hulgad (näide). Tõkestamata hulgad (näide). Hulk koosneb elementidest, kusjuures elemendid ei kordu ja nende järjestus ei ole kindlaks määratud. Järjestatud hulk koosneb samuti elementidest, kuid selles hulgas on iga kahe elemendi kohta võimalik öelda, kumb neist on eelnev, kumb järgnev. Tehted hulkadega: * Hulkade A ja B ühendiks ehk summaks nimetatakse hulka, mille moodustavad kõik kas hulka A, hulka B või mõlemasse kuuluvad elemendid. Hulkade A ja B ühendit tähistatakse * Hulkade A ja B ühisosaks ehk korrutiseks nimetatakse hulka, mille moodustavad kõik üheaegselt nii hulka A kui ka hulka B kuuluvad elemendid. Hulkade A ja B ühisosa tähistatakse * Hulkade A ja B vaheks nimetatakse kõigi selliste elementide hulka, mis kuuluvad hulka A, kuid ei...

Matemaatika → Matemaatiline analüüs
195 allalaadimist
thumbnail
6
doc

Matemaatiline analüüs I, 2. kollokviumi spikker

1. Tuletise lineaarsuse tõestus, st näidata, et saame konstandi tuletise märgi alt välja tuua ning summa tuletis on tuletiste summa. Lause: Kui funktsioonid f(x) ja g(x) on diferentseeruvad punktis x ja cR on konstant, siis selles punktis on diferentseeruv ka funktsioon cf(x) Tõestus:Korrutise tuletisest y’=f’(x)g(x)+f(x)g’(x) lähtuvalt, kui cR on konstant, siis y=c*f(x) tuletis on Tõepoolest, valem kehtib juhul n=1. y’=f(x)*c’+f ’(x)*c=0*f(x)+c*f ’(x)=c*f ’(x) Nüüd tuleb näidata induktsioonisamm: eeldame, et valem kehtib juhul n-1 ja näitame, et sel juhul kehtib ta Lause: Kui funktsioonid f(x) ja g(x) on diferentseeruvad punktis x ja cR on konstant, siis selles punktis on ka n korral. Seega kehtib: diferentseeruv ka funktsioon y=f(x)+g(x) Tõestus: y=f(x)+g(x) esmalt, toimides sammhaaval, tehes eraldi tehetena komponendid,saame ...

Matemaatika → Matemaatiline analüüs 1
41 allalaadimist
thumbnail
5
doc

Matemaatilise analüüsi 2.kollokviumi

Mitmemuutuja funktsiooni mõiste. Mitmemuutuja funktsiooni piirväärtuse definitsioon. Pideva mitmemuutuja Kui funktsiooni z=f(x,y) on diferentseeruv kohal (x,y), siis funktsioon f on pidev sellel kohal. funktsiooni definitsioon. Kahemuutuja funktsiooni pidevuse geomeetriline sisu. Funktsioon z=f(x,y) on diferentseeruv kohal (x,y) siis, kui funktsioonil z=f(x,y) on pidevad osatuletised fx ja fy kohal (x,y). Kui hulga Rn igale punktile P(x1, . . . , xn) on vastavusse seatud muutuja u R kindel väärtus, siis öeldakse, et hulgal on Kui funktsiooni f(x,y) osatuletised fx(x,y) ja fy(x,y) on diferentseeruvad kohal (x,y), siis fxy = fyx kohal (x,y). defineeritud n-muutuja (skalaarväärtusega) funktsioon. Suurust df:=fx(x,y)dx + fy(x,y)dy, kus dx:= x...

Matemaatika → Matemaatiline analüüs 2
37 allalaadimist
thumbnail
16
docx

Matemaatiline analüüs 2 KT

KT 2, MAT. ANALÜÜS 18. Esitada funktsiooni muut diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu ∆x suhtes, kui ∆x läheneb nullile? Tõestada ei ole vaja.  ∆y = f’(a)∆x + β  Diferentsiaal ja jääkliige on lõpmatult kahanevad protsessis ∆x → 0. 19. Funktsiooni lokaalsete ekstreemumite definitsioonid. Sõnastada Fermat’ lemma (tõestust ei küsi). Öeldakse, et funktsioonil f on punktis x1 lokaalne maksimum, kui 1. funktsioon f on määratud punkti x1 mingis ümbruses (x1 − ɛ, x1 + ɛ); 2. iga x ∈ (x1 − ɛ, x1 + ɛ) korral kehtib võrratus f(x) ≤ f(x1). Öeldakse, et funktsioonil f on punktis x1 lokaalne miinimum, kui 1. funktsioon f on määratud punkti x1 mingis ümbruses (x1 − ɛ, x1 + ɛ); 2. iga x ∈ (x1 − ɛ, x1 + ɛ ) korral kehtib võrratus f(x) ≥ f(x1).  Fermat’ lemma - kui funktsioonil f on pun...

Matemaatika → Matemaatika
14 allalaadimist
thumbnail
5
docx

Teine osaeksam, matemaatiline analüüs I, teooriaküsimused

Matemaatilise analüüsi (I) II osaeksami teooriaküsimused (Tallinnas õppivatele kaugõppijatele) 1. Funktsiooni muudu peaosa ja funktsiooni diferentsiaal. Sõltumatu muutuja diferentsiaal. Funktsiooni diferentsiaali valem. Ligikaudse arvutamise valem. Funktsiooni muut y koosneb kahest liidetavast, millest esimene [kui f ( x ) 0 ] on muudu niinimetatud peaosa, mis on võrdeline argumendi muuduga x . Korrutist f ( x ) x nimetatakse funktsiooni diferentsiaaliks ja tähistatakse sümboliga dy või df ( x ) . Sõltumatu muutuja x diferentsiaal dx ühtib tema muuduga x . dy f ( x ) = Funktsiooni diferentsiaali valem: dy = f ( x ) dx ehk dx Ligikaudse arvutamise valem: f ( x + x ) f ( x ) + f ( x ) x 2. Kõrgemat järku tuletised. Funktsiooni teist järku tuletiseks ehk teiseks ...

Matemaatika → Matemaatika analüüs i
147 allalaadimist
thumbnail
3
docx

Matemaatiline analüüs 1

23Funktsiooni muudu peaosa ja jääkliige. Olgu antud funktsioon, mis on diferentseeruv punktis a. Eeldame, et f(a)0 26l'Hospitali reegli põhjal saab 0/0 tüüpi määramatusega piirväärtuse arvutamisel üle minna piirväärtusele, mille all kasutades mõisteid: esineb esialgse murru lugeja tuletise ja nimetaja tuletise jagatis. x = x - a - argumendi muut kohal a Tuletamine. Arvutame lim(x0)?sinx/x?. Elementaarfunktsioon sinx/x ei ole x = 0 korral määratud (tekib määramatus y = f(x) - f(a) - funktsiooni muut kohal a . 0/0). Piirväärtuse arvutamisel kasutame l'Hospitali reeglit: Näitasime, et ...

Matemaatika → Matemaatiline analüüs 1
66 allalaadimist
thumbnail
22
docx

Matemaatika analüüs I konspekt

Reaalarvud Positiivsed ja negatiivsed täisarvud ning murdarvud koos arvuga 0 moodustavad ratsionaalarvude hulga. Ratsionaalarve saab väljendada kahe täisarvu suhtena ja lõpmatu perioodilise kümnendmurruna. 1 −5 1 1 Nt 4 ; 1 ; 3 =0,(3); 7 . Lõpmatud mitteperioodilised kümnendmurrud moodustavad irratsionaalarvude hulga. Nt. π; e; √2 ; √3 . Ratsionaalarvude ja irratsionaal arvude hulgad moodustavad kokku reaalarvude hulga. Arvtelg ___ lõpmatu sirge, millel on määratud suund, 0-punkt ja pikkusühik. Igale reaalarvule vastab arvteljel üks punkt ja vastupidi. Reaalarvude hulgal on selline omadus, et iga kahe reaalarvu vahel on veel ratsionaalarve ja irratsionaalarve. Reaalarvu absoluutväärtus. Olgu arv x. Selle arvu absoluutväärtus moodul I x I on defineeritud järgmiselt: I x I = x, kui x ≥ 0 I x I = -x, kui x < 0 Nt. I 3 I = 3 ; I -5 I = 5 ; I 0 I = 0 Arvu absoluutväärtus muudab arvtel...

Matemaatika → Matemaatika analüüs i
24 allalaadimist
thumbnail
3
doc

Mat. Analüüsi 2. KT konspekt (vähendatud programm)

Mat. Analüüsi 2. KT konspekt (vähendatud programm ) 18. Esitada funktsiooni muut diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? 19. Funktsiooni lokaalsete ekstreemumite definitsioonid. Öeldakse, et funktsioonil f on punktis x1 lokaalne maksimum kui: funktsioon on määratud punkti x1 mingi ümbruses ( ; ) ja iga x ( ; ) korral kehtib võrratus f(x) f(x 1). Öeldakse et funktsioonil on punktis x1 lokaalne miinimum kui: funktsioon f on määratud punkti x1 mingis ümbruses ( ; ) ja iga x kuulumisel ümbrusesse korral kehtib võrratus f(x) f(x1) Sõnastada Fermat' lemma . Kui funktsioonil on punktis x1 lokaalne ekstreemum ja funktsioon on selles diferentseeruv, siis f´(x1)=0 20. Kõrgemat järku tuletiste definitsioonid. Funktsiooni y=f(x) n-järku tuletiseks nimetatakse selle funktsiooni n-1 järku tuletise tuletist ja tähis...

Matemaatika → Matemaatiline analüüs
55 allalaadimist
thumbnail
14
doc

Kollokvium III

1. Algfunktsiooni definitsioon. Määramata integraali definitsioon. Määramata integraal kui tuletise ja diferentsiaali pöördoperaator. Funktsiooni f algfunktsiooniks nimetatakse funktsiooni F, mis rahuldab tingimust F'(x) = (x)= f(x). Definitsioon (määramata integraal) Avaldist kujul F(x) + C; kus F(x) on funktsiooni f (x) mingi algfunktsioon ja C on suvaline konstant (integreerimiskonstant), nimetatakse funktsiooni f (x) määramata integraaliks ja tähistatakse st . Määramata integraali tuletis on võrdne integreeritava funktsiooniga st ( )'= f(x). Tõestus: ( )'= (F(x)+C)'=F'(x)= f(x). d( )= ( )'dx = f(x)dx = F'(x)dx= dF(x). Operaatorit L:V->W nimetame lineaarseks kui on täidetud tingimused: a)L(f+g)= L(f) + L(g) kui f, g V (aditiivsus) b) L(cf) = cL(f) kui f V ja c R (homogeensus). Määramata integraal on lineaarne operaato...

Matemaatika → Matemaatiline analüüs
107 allalaadimist
thumbnail
4
docx

Matemaatiline analüüs, kollokvium 2

∆y f ( x+ ∆ x )−f (x) f’(x) = lim = lim Geomeetriline tõlgenus: tuletise f(x) väärtus argumendi x antud ∆ x→ 0 ∆x ∆ x→ 0 ∆x väärtusel = x-telje positiivse suuna ja funktsiooni f(x) graafikule punktis M 0(x,y) joonestatud puutuja vahelise nurga tangensiga. f’ on mingis punktis graafikule tõmmatud puutuja tõusunurga tangens. f’(x) = tan α. f ' ( x )−f ' (a) f ( n−1 ) ( x )−f ( n−1 ) (a) f’’(a) := [f’(a)]’x=α = lim f(n)(a) := [f(n-1)(a)]’x=a = lim x→ a x−a x→ a x−a dy Avaldis ...

Matemaatika → Matemaatiline analüüs
38 allalaadimist
thumbnail
20
docx

Matemaatiline analüüs II kontrolltöö

Matemaatiline analüüs II kontrolltöö Punktid 23-45 23. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile?(Tõestada) Loetleda diferentsiaali omadused. a. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana b. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile?(Tõestada) c. Loetleda diferentsiaali omadused c.1. c.2. c.3. c.4. c.5. 24. Funktsiooni lokaalsete ekstreemumite definitsioonid.Sõnastada ja tõestada Fermat' lemma. a. Funktsiooni lokaalsete ekstreemumite definitsioonid a.1. Öeldakse, et funktsioonil f on punktis x lokaalne miinimum, kui ...

Matemaatika → Matemaatiline analüüs
122 allalaadimist
thumbnail
18
docx

Matemaatiline analüüs KT2 vastused

23. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? (tõestada!). Loetleda diferentsiaali omadused. Funktsiooni muudu peaosa ja jääkliige. Olgu antud funktsioon, mis on diferentseeruv punktis a. Eeldame, et f(a)0 kasutades mõisteid: x = x - a - argumendi muut kohal a y = f(x) - f(a) - funktsiooni muut kohal a . Näitasime, et Seega kui tähistame ja f'(a) vahe järgmiselt : Kehtib võrdus Püüame avaldada funktsiooni muutu y argumendi muudu x kaudu. Selleks avaldame kõigepealt võrdusest suhte ja korrutame saadud avaldise x-ga. Saame valemi Valemist näeme, et funktsiooni muut y koosneb kahest liidetavast, millest esimene on diferentsiaal dy = f(a)x ja teine on . Mõlemad liidetavad on lõpmatult kahanevad protsessis x 0. Võrdleme neid suurusi x suhtes. Esiteks, eelduse f(a) 0 põhjal saame : Teiseks kehtib valem :...

Matemaatika → Matemaatiline analüüs i
120 allalaadimist
thumbnail
26
doc

Matemaatiline analüüs I - kordamine eksamiks

MATEMAATILINE ANALÜÜS I § 1 REAALARVUD JA FUNKTSIOONID 1. Reaalarvu mõiste Tähistame sümboliga N kõigi naturaalarvude hulga, st N = {1, 2, 3,...} ja sümboliga Z kõigi täisarvude hulga, st Z = {...,­3,­2,­1, 0, 1, 2, 3,...}. p Ratsionaalarvudeks nimetatakse arve kujul q , kus p ja q on täisarvud, q 0. Kõigi ratsionaalarvude hulga tähistame sümboliga Q. Ratsionaalarvudeks on parajasti need arvud, mis on esitatavad lõplike või lõpmatute perioodiliste kümnendmurdudena. Arve, mis on esitatavad lõpmatute mitteperioodiliste kümnendmurdudena, nimetatakse irratsionaalarvudeks. Kõik ratsionaalarvud ja irratsionaalarvud moodustavad reaalarvude hulga. Kõigi reaalarvude hulga tähistame sümboliga R. Iga lõplikku kümnendmurdu a= , 12 ...n saab esitada lõpmatu kümnendmurruna kahel viisil: a = , 12 ...n 00... või a =...

Matemaatika → Matemaatiline analüüs i
687 allalaadimist
thumbnail
39
pdf

Matemaatiline analüüs I konspekt -Tõkestatud hulgad

Kordamine matemaatilise analüüsi I eksamiks matemaatika-informaatika teaduskonnas 04/05 õ.a I FUNKTSIOONID Tõkestatud hulgad Ülalt ja alt tõkestatud hulgad Olgu X mingi reaalarvude hulk. Definitsioon: Kui leidub niisugune reaalarv M , et hulga X iga elemendi x puhul kehtib võrratus x M , siis öeldakse, et hulk X on ülalt tõkestatud, kusjuures arvu M nimetatakse hulga X ülemiseks tõkkeks. Ülalt tõkestatud hulga X elemendid paiknevad seega lõpmatus poollõigus (- , M ] . Definitsioon: Kui leidub niisugune reaalarv m , et hulga X iga elemendi x puhul kehtib võrratus x m , siis öeldakse, et hulk X on alt tõkestatud, kusjuures arvu m nimetatakse hulga X alumiseks tõkkeks. Alt tõkestatud hulga X elemendid paiknevad seega lõpmatus poolllõigus [m, ) . Definitsioon: Hulka X nimetatakse tõkestatud hulgaks, kui X on ülalt ja alt tõkestatud. Tõkestatud hulga X elemend...

Matemaatika → Matemaatiline analüüs i
73 allalaadimist
thumbnail
15
docx

Matemaatika analüüsi II Kontrolltöö

Matemaatilise analüüsi II Kontrolltöö 1. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? (tõestada!). Loetleda diferentsiaali omadused. a. Teades, et ­argumendi muut kohal a -funktsiooni muut kohal a a.i. Nii me näitasime, et a.ii. Tähistades ja vahe järgmiselt a.iii. Kehtib võrratus: a.iv. Et avaldada väärtust kaudu peame kõigepealt avaldama suhte: a.v. Korrutades saadud avaldist saame: kus a.vi. Nüüd näemegi, et koosneb kahest liidetavast, esimeseks dy= ja teine on , mis kahanevad piirprotsessis a.vii. Võrdleme neid suuruseid suhtes: a.viii. Lisaks kehtib veel: a.ix. Nüüd teame,et diferentsiaal dy on sama järku kahanev suur...

Matemaatika → Matemaatiline analüüs 2
99 allalaadimist
thumbnail
2
pdf

Matemaailine analüüs I kollokvium III spikker

1). (Algfunktsiooni definitsioon. Määramata integraali definitsioon. Määramata 7).(Lihtsamate osamurdude integreerimine. Valemite tuletamine). 12. (Näidata, et kui funktsioonid f (x) = g(x) välja arvatud lõplikus arvus punktides, siis integraal kui tuletise ja diferentsiaali pöördoperaator). Tõestame selle järelduse juhul, kui g(x) f(x) vaid punktis x=c [, ]. () Funktsiooni f algfunktsiooniks nimetatakse funktsiooni F, mis rahuldab tingimust [, ] selle lõigu tükeldus, kusjuures [-1 , ]. Kuna g(x) = O(1) (x[a,b]) F'(x) = (x)= f(x). Definitsioon (määramata integraal) Avaldist kujul F(x) + C; kus ...

Matemaatika → Matemaatika analüüs i
139 allalaadimist
thumbnail
32
doc

Matemaatika I küsimused ja mõisted vastustega

Sisujuht 16. Esimest liiki katkevuspunkt - niisugust katkevuspunkti, kus funktsioonil f on olemas ühepoolsed piirväärtused f ( a+) = lim f(x); x a+ ja f( a- ) = lim f(x); x a - nimetatakse 1. liiki katkevuspunktiks. ( hüppekoht, kõrvaldatav katkevuskoht, ................................................... 3 17. Teist liiki katkevuspunkt - arvu a nimetatakse funktsiooni y = f(x) teist liiki katkevuspunktiks, kui lim f(x); x a - on lõpmatu või ei eksisteeri ............................................ 4 20. Diferentseeruv funktsioon - kui funktsioonil y = f(x) on tuletis punktis x = x0, siis ütleme, et funktsioon on diferentseeruv punktis x0. Kui funktsioon on aga diferentseeruv mingi piirkonna igas punktis, öeldakse, et funktsioon on diferentseeruv selles piirkonnas. ..................................... 4 1. Arvuhulgad: naturaal-, täis-, ratsionaal-, reaal- ja kompleksarvud. Nende omadused. ...............6 2. Reaalarvu absoluutväärt...

Matemaatika → Matemaatika
118 allalaadimist
thumbnail
3
docx

Kollokvium III 1.17-1.23 kõik

1.17. L'Hospitali reegel Reegel, abistamaks piirväärtuse leidmist. Lause 1. Kui ja eksisteerib ning , siiseksisteerib ka , kusjuures , st . Analoogiline v'ide peab paika ka vasakpoole piirväärtuse ja ka kahepoolse piirväärtuse korral. Tõestus. Eelduses, et eksisteerib sisaldub vaikimisi, et Olgu suurus selline, et . Vaatleme abifunktsioone: ja . Ning nendest järeldub, et , kusjuures . Et , siis funktsioonid F(x) ja G(x) rahuldavad Cauchy teoreemi eeldusi ning kehtib väide: . Vasakpoolse piirväärtusega analoogselt: (kirjutan ümber sama aint a-) Niiet kui on täidetud see sama tingimuste kompott ja kehtivad sellised piirväärtused ja eksisteerib , siis kehtib võrdus . N. N. 1.18.Taylori polünoom. Olgu y=Pn(x) n-järku vektorruum, kus baasiks on {1, x-a, (x-a)2,...,(x-a)n} . Leian kordajad Ck: Pn(a)=C0 . Diferentseerides mõlemaid pooli, saame, et . Analoogilist mõttekäiku jätkates jõuame tulemuseni: N. P2(x)=x2+x-7 [P2(x)=5+7/1!(x-3)+2/2!(x-...

Matemaatika → Matemaatiline analüüs
53 allalaadimist
thumbnail
11
doc

Matmaatiline analüüs I 1. teooriatöö konspekt

Matemaatiline analüüs I I KT 1. Arvteljeks nimetatakse sirget, millel on maaratud nullpunkt, pikkusühik ja positiivne suund. Kasutades neid parameetreid saab punktidele teljel märkida kõik reaalarvud. Igale reaalarvule vastab arvteljel ainult üks koht ja vastupidi. Absoluutväärtus on punkti kaugus koordinaatide alguspunktist. |a| =a kui a 0 -a kui a < 0 . Absoluutväärtuste omadused 1. | - a| = |a| 2. |ab| = |a| |b| 3. |a + b| |a| + |b| 4. |a - b| | |a| - |b| | Reaalarvude ja lõpmatuste ümbrused Reaalarvu a ümbruseks nimetatakse suvalist lõiku (a-;a+), kus >0 on ümbruse raadius. Arv x kuulub a ümbrusesse siis ja ainult siis, kui punkti x kaugus a- st on väiksem ümbruse raadiusest | x-a| < Suuruse lõpmatus ümbrust nimetatakse suvalist vahemikku (M; ), kus M>0. Arv x kuulub lõpmatuse ümbrusesse kui x>M Suuruse miinus lõpmatus ümbrust nimetat...

Matemaatika → Matemaatiline analüüs
246 allalaadimist
thumbnail
4
pdf

Matemaatilise analüüsi kollokvium II spikker(2LK)

1). (Tuletise lineaarsuse tõestus, st näidata, et saame konstandi tuletise märgi alt välja tuua ning Definitsioon: Funktsiooni y = f (x) nimetatakse rangelt kasvavaks punktis x, kui leidub selline summa tuletis on tuletiste summa). Lause: Kui funktsioonid f(x) ja g(x) on diferentseeruvad positiivne arv δ, et suvaliste x1 ϵ (x - δ; x) ja x2 ϵ (x; x + δ) korral f (x1) < f (x) < f (x2). punktis x ja cR on konstant, siis selles punktis on diferentseeruv ka funktsioon cf(x) Lause: Kui funktsioon y = f (x) on rangelt kasvav punktis x, siis leidub selline δ > 0, Tõestus:Korrutise tuletisest y’=f’(x)g(x)+f(x)g’(x) lähtuvalt, kui cR on konstant, siis y=c*f(x) tuletis on y’=f(x)*c’+f ’(x)*c=0*f(x)+c*f ’(x)=c*f ’(x) L...

Matemaatika → Matemaatiline analüüs i
73 allalaadimist
thumbnail
37
docx

Matemaatiline analüüs l.

Matematiline analüüs l. Jaan Jaano 1. Arvtelje mõiste. Reaalarvu absoluutväärtus. Loetleda absoluutväärtuse omadused. Reaalarvude ja lõpmatuste ümbrused. Tõkestatud hulga definitsioon. Arvtelje mõiste. Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Võib väita, et igale arvtelje punktile vastab üks ja ainult üks reaalarv ja vastupidi: igale reaalarvule vastab üks ja ainult üks arvtelje punkt. Absoluutväärtuse mõiste. Reaalarvu a absoluutväärtuseks nimetatakse järgmist mittenegatiivset reaalarvu: |a| = a kui a 0 -a kui a < 0 . Reaalarvu a absoluutväärtus |a| on punkti a ja nullpunkti vahelist kaugust arvteljel. Absoluutväärtuse omadused: 1. | - a| = |a| 2. |ab| = |a| |b| 3. |a + b| |a| + |b| 4. |a - b| | |a| - |b| | Reaalarvude ja lõpmatuste ümbrused. Reaalarvu a ümbruseks nimetatakse suvalist vahemikku (a - , a + ), kus > 0 on ümbruse raadius. Reaalarvu a vasakpoolseks ümbruseks...

Matemaatika → Matemaatiline analüüs
484 allalaadimist
thumbnail
8
docx

Matemaatiline analüüs I 2. teooria KT vastused

TÕESTUSED, TULETUSKÄIGUD, PÕHJENDUSED!!! 23. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana y = f'(a)x + , kus = r(x)x Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? (tõestada!). funktsiooni muut y koosneb kahest liidetavast, millest esimene on diferentsiaal dy = f'(a)x ja teine on . M~olemad liidetavad on l~opmatult kahanevad protsessis x 0. V~ordleme neid suurusi x suhtes. Esiteks, eelduse f'(a) 0 p~ohjal saame lim dy x= lim f'(a)/x* x= lim f'(a) = f(a) 0. x0 x0 x0 Teiseks kehtib lim / x = lim r(x)x /x = lim r(x) = 0. x0 x0 x0 N¨aeme, et esimene liidetav, so diferentsiaal dy on sama j¨arku l~opmatult kahanev suurus kui x ja teine liidetav on k~orgemat j¨arku l~opmatult kahanev suurus x suhtes. J¨arelikult v¨aikese x korral hakkab diferentsiaal funktsiooni muudu avaldises domineerima. Seet~ottu v~oime lugeda diferent...

Matemaatika → Matemaatika
46 allalaadimist
thumbnail
3
docx

Kollokvium integraal

Funktsioon uurimine 1. Määramispiirkond; 2. Graafiku sümmeetria; 3. Perioodilisus ( paaris või paaritu); 4. Katkevuspunktid ja pidevuspiirkonnad; 5. Nullkohad ja negatiivsus- ja positiivsuspiirkonnas; 6. Lokaalsed ekstreemumid ja range monotoonsuse piirkond; 7. Graafiku käänupunktid ja kumerus- ning nõgususpiirkonnad; 8. Graafiku püstasümptoodid; 9. Graafiku kaldasümptoodid; 10. Skitseerime graafiku. Integraal Def1 Öeldakse, et funktsiooni F ( x ) on funktsiooni f ( x ) algfunktsioon hulgal X, kui iga x X korral . Lause1 Kui funktsioon F1 ( x ) ja F2 ( x ) on funktsiooni f ( x ) algfunktsioonid, siis leidub selline reaalarv c, nii et F1 ( x ) = F2 ( x ) + c. Def2 Avaldist kujul F ( x ) + C, kus F ( x on funktsiooni f ( x ) mingi algf...

Matemaatika → Matemaatiline analüüs
92 allalaadimist
thumbnail
1
docx

Matemaatiline analüüs II toreeme ja definitsioone

Def.1 Hulka, mille elementideks on kõik m reaalarvust koosnevad järjestatud süsteemid (x1,x2,...xm) nim m-mõõtmeliseks ruumiks. Igat süsteemi (x1,x2,...xm) nim m-mõõtmelise ruumi punktiks ja tähist. P=(x1,x2,...xm) või P(x1,x2,...xm). Arbe x1,x2,...xm nim. punkti P koordinaatideks. Def.2 Sellist m-mõõtmelist ruumi, kus on määratud iga kahe punkti d(A,B) seosega d(A,B)=( i=1m(ai-bi))1/2 nim m-mõõtmeliseks eukleidiliseks ruumiks ja tähist. Rm Def.3 Kui hulgs D igale punktile P=(x1,x2,...xm) on vastavusse seatud üks kindel reaalarv w, siis öeldakse, et hulgal D on määratud w- muutuja funktsioon w=f(x1,x2,...xm), hulka D nim funi w=f(x1,x2,...xm) määramispiirkonnaks, suurusi x1,x2,...xm nim funi argumentideks (funil on m argumenti) Def.4 Punkti ARm ümbruseks nim iga lahtist kera S(a,r) (erijuhud: m=2 ­ A ümbruseks lahtine ring S(a,r), m=1 ­ A ümbruseks sümmeetriline vahemik) Def.5 Öeldakse, et hulk D on lahtine ruumis Rm kui iga tema punk...

Matemaatika → Matemaatika
24 allalaadimist
thumbnail
13
docx

Matemaatiline analüüs I KT

Matemaatiline analüüs 1. Arvtelg ­ sirge, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Igale arvtelje punktile vastab üks ja ainult üks reaalarv ja vastupidi: igale reaalarvule vastab üks ja ainult üks arvtelje punkt. Öeldu põhjal saab reaalarvud samastada sirge (arvelje) punktidega. Absoluutväärtuse mõiste ­ reaalarvu a absoluutväärtuseks nimetatakse järgmist mittenegatiivset arvu. Reaalarvu a absoluutväärtust |a| võib tõlgendada kui punkti a ja nullpunktivahelist kaugust arvteljel. Absoluutväärtuste omadused: Reaalarvude ja lõpmatuste ümbrused ­ Reaalarvu a ümbruseks nimetatakse suvalist vahemikku (a ­ ; a + ), kus > 0 on ümbruse raadius. Arv x kuulub arvu a ümbrusesse (a-; a+) siis ja ainult siis, kui selle arvu kaugus arvteljel on arvust a väiksem kui , st |x-a| < . Reaalarvu vasakpoolseks ümbruseks nimetatakse suvalist poollõiku (a-], kus >0. Arv x kuulub arvu ...

Matemaatika → Matemaatiline analüüs
136 allalaadimist
thumbnail
23
doc

Matemaatiline analüüs KT1 vastused

MATEMAATILINE ANALÜÜS I KONTROLLTÖÖ 1.Arvtelje mõiste- Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Kasutades neid kolme parameetrit, saab arvtelje punktidele seada vastavusse reaalarvud. Reaalarvu absoluutväärtus- |a| = a kui a 0 -a kui a < 0 Reaalarvu a absoluutväärtust |a| võib tõlgendada kui punkti a ja nullpunkti vahelist kaugust arvteljel. Loetleda absoluutväärtuse omadused- 1. | - a| = |a| 2. |ab| = |a| |b| 3. |a + b| |a| + |b| 4. |a - b| | |a| - |b|/ Reaalarvude ja lõpmatuste ümbrused- Reaalarvu a ümbruseks nimetatakse suvalist vahemikku (a - , a + ), kus > 0 on ümbruse raadius. Arv x kuulub arvu a ümbrusesse (a-, a+) siis ja ainult siis, kui selle arvu kaugus arvteljel on arvust a väiksem kui , st |x - a| < . Reaalarvu a vasakpoolseks ümbruseks nimetatakse suvalist poollõiku (a - , a], kus > 0. Arv x kuulub arvu a vasakpoolsesse ümbrusesse (a - , a] siis...

Matemaatika → Matemaatiline analüüs i
105 allalaadimist
thumbnail
16
doc

Matemaatiline analüüs

Täisprogramm Selle programmi järgi saab ette valmistada teooria kontrolltööde B (so raskemateks) variantideks. Esimese kontrolltöö materjal hõlmab lõike 1 ­ 22 ja teise kontrolltöö materjal hõlmab lõike 23 - 45. Igas kontrolltöös on 5 küsimust. Üks küsimus viiest on valitud jämedas kirjas (bold face) olevate teemade hulgast. Vähemalt kaks küsimust viiest sisaldavad tõestusi, tuletuskäike või põhjendusi. Programm järgib otseselt õppejõu konspekti. Kontrolltöödes ei küsita konspektis esitatud näiteid ja väikeses kirjas olevaid osi. 1. Arvtelje mõiste. Reaalarvu absoluutväärtus. Loetleda absoluutväärtuse omadused. Reaalarvude ja lõpmatuste ümbrused. Tõkestatud hulga definitsioon. V: Arvtelje mõiste: arvteljeks nim. sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Reaalarvu absoluutväärtus: reaalarvu a absoluutväärtuseks nim. järgmist mittenegatiivset reaalarvu. Reaalarvu a absoluutväärtust a võib tõlgendada k...

Matemaatika → Matemaatiline analüüs
232 allalaadimist
thumbnail
28
pdf

Kõrgema matemaatika üldkursus

TE.0568 Kõrgema matemaatika põhikursus (4 EAP) 2011/2012 sügis 1. Determinandid: omadused, miinorid, alamdeterminandid. Crameri meetod lineaarvõrrandisüsteemi lahendamiseks. Determinant on lineaaralgebras funktsioon, mis seab igale ruutmaatriksile vastavusse skalaari, ning on üks olulisemaid matemaatilisi konstruktsioone lineaarvõrrandsüsteemi uurimisel. Determinandiks nimetatakse ruutmaatriksiga seotud arvu, mis on arvutatud teatud eeskirja kohaselt. Determinante tähistatakse DA Maatriksi A determinanti tähistatakse tavaliselt , või . Determinant on defineeritud vaid ruutmaatriksile. Determinandi põhiomadused 1. Maatriksi determinandi väärtus ei muutu maatriksi transponeerimisel: det(A) = det(AT). 2. Determinant on null, kui determinandi 1 rida või veerg : 1. koosneb nullidest 2. on võrdne mõne teise...

Matemaatika → Kõrgem matemaatika
324 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun