Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

Rakendusenergeetika 2. kodutöö - sarnased materjalid

lesande, katta, pump, kirjaga, igem, baromeetriline, vajaminev, summaarne, imsus, kavitatsioonivaru, npsh, hemalt, pilane, rakendusenergeetika, likool, vrager, ppej, pumbad, rrandi, darcy
thumbnail
150
doc

СБОРНИК МЕТОДИК ПО РАСЧЕТУ

504.064.38 (, , , , , .), . ..................................................................................................4 1. ..............5 1.1. ....................................................................................5 1.2. .........................................................................................5 1.3. .....................................................................................6 1.4. ....................................................................................7 1.5. ........................................................................................7 2. 30 /.....................................................................9 2.1. ..................................................................................9 2.2. .......

Ökoloogia ja...
5 allalaadimist
thumbnail
11
doc

ELEKTRIAJAMIGA TRUMMELVINTS PROJEKT

TALLINNA TEHNIKAÜLIKOOL MEHHATROONIKAINSTITUUT ELEKTRIAJAMIGA TRUMMELVINTS PROJEKT ÜLIÕPILANE: ....... KOOD: ........ JUHENDAJA: I. Penkov TALLINN 2007 1. Ajami kinemaatiline skeem 2. Trossi valik ja trumli läbimõõdu arvutus Tugevustingimus Maksimaalne pingutusjõud Fmax = m g = 450 * 9,81 4415 N . Varutegur [S] = 5 [6]. Pidades silmas trossi keeramist ainult trumlil (mitte alt olevate trossi keerdude peal) valime tross TEK 21610 [7], mille Ft = 59,5 kN Siis Trossi mõõt d = 10 mm. Siis trumli läbimõõt kus e = 20 Valime D = 200 mm reast 160; 200; 250; 320; 400; 450; 560; 630; 710; 800; 900; 1000 mm 3. Mootorreduktori valik Trumli pöörlemiseks vajalik võimsus kus T ­ pöördemoment, Nm; T - nurkkiirus, rad/s. Pöördemoment kus F - tõstejõud. Fmax = m g = 450 * 9,81 4415 N Kus g 9,81 m/s ­ raskuskiirendus; m ­ tõstetav mass.

Põhiõppe projekt
278 allalaadimist
thumbnail
11
doc

Hüdraulika - Koduse tööde lahendus

TALLINNA TEHNIKAKÕRGKOOL TALLINN COLLEGE OF ENGINEERING KODUSED TÖÖD Õppeaines: HÜDRAULIKA, PNEUMAATIKA Variant: nr. 30 Mehaanikateaduskond Üliõpilane: Dmitri Himotshka Õpperühm: KMI-31 Õppejõud: Rein Soots Tallinn 2011 Ülesanne 1 Antud: = 13600kg/m3 h = 8400 mm = 8,4 m g = 9,81 m/s² Leida: p1 = ? Pa p2 = ? Ba p3 = ? MPa Lahendus: 8400 mmHg = 8400 Tr = 133,3 * 84000 = 1119720 Pa p = hg p1 = 8,4 m * 13600kg/m3 * 9,81 m/s² = 1120694 Pa p2 = 1120694 Pa / 105 = 112,07 bar p3 = 1120694 Pa / 106 = 11,207 MPa Vastus: p1 = 1120694 Pa p2 = 112,07 Ba p3 = 11,207 MPa Ülesanne 3 Antud: p = 200 bar = 2 · 107 Pa m = 10000 kg = 0,8 Leida: dmin = ? Lahendus: 1) Leian silindri ristlõike pindala. mg F = pA A = p kus: p ­ pinnale mõjuv rõhk, [Pa]

Hüdraulika ja pneumaatika
166 allalaadimist
thumbnail
53
doc

LAEVA ABIMEHHANISMID

.... 0,9 . Hüdraulilise akumulaatori ülesandeks on energia akumuleerimine. Teda kasutatakse praktikas neil juhtudel , kui on tarvis töötada lühiajaliste suurte koormustega , näiteks raskete koormuste tõstmisel, lüüsiväravate avamisel jne. Hüdraulilisi akumulaatoreid kasutatakse ka hüdraulilistes pressides . Pressi tühikäigu vältel kogub hüdrauline akumulaator teatava vedelikuvaru . Töökäigu ajal ei suuda pump silindrisse küllaldaselt vedelikku anda ; puudujäägi katab siis hüdrauliline akumulaator. Hüdrauliline akumulaator ( joon ) koosneb silindrist A ,milles liigub kolb B. Selle ülemisse otsa külge on kinnitatud traavers C . Traaversi otstele on riputatud raskused . Vedelik ( vesi või õli ) pumbatakse akumulaatorisse mööda toru D . Akumulaatori silindrisse pumbatav vedelik surub kolvi üles. Kui kolb jõuab

Abimehanismid
65 allalaadimist
thumbnail
11
docx

Pumbad ja Ventilaatorid

Tallinna Tehnikaülikool Ehitusteaduskond Mehaanikainstituut Pumbad ja Ventilaatorid EMH0040 Kodutöö: Survetõstepumpade valik Koostas Eaki-73 Tallinn 2014 Pumbad ja Ventilaatorid EMH0040 Kodutöö: survetõstepumpade valik Pumplas on kaheasmeline töögraafik.Öösel töötab üks pump : vajalik Q1, päeval töötavad kaks pumpa: vajalikQ1+2 .Tulekahju olukorras vooluhulk suureneb 30l/s. Valida pumbad ning kontrollida pumpade sobivust kahjutule kustutamiseks tingimusel, et veevõrgus on tagatud surve 10m H2O. Vajadusel lisada pumplasse kolmas pump või tagada kahjutule kustutamiseks vajalik vooluhulk pumpade pöörete arvu reguleerimisega. Pumpamine toimub kahte rööbiti paigaldatud peatorusse, millede pikkus on l. Torude materjjal on teras, karedus =0,5mm

Ehitus
12 allalaadimist
thumbnail
42
docx

Hüdrodünaamika

13 M ~380V 17 18 19 20 6 L 1 Joonis 1.3 Toitesüsteem pumbata vett pumbaga 16 paagist 1 paaki 23. Selleks avatakse pumba imemisavapoolne kraan 15 ja kraan 21. Oodatakse kuni õhk väljub pumbast ja torustikust ning käivitatakse pump. Pumba käivitamiseks tuleb ühendada sagedusmuundur 18 lüliti 20 abil vooluvõrku, vajutada nuppu “RUN” ning aeglaselt tõsta pumba tööratta pöörlemissagedust (voolu sagedust) kuni vesi voolab paagist 1 survepaaki 23. Üleliigne vesi survepaagis 23 peab ülevoolutorustiku 8 kaudu voolama paaki 1 ja veenivoo nivootorus 25 peab püsima muutumatuna. See saavutatakse muutes sagedusmuunduri 18 abil tsentrifugaalpumba tööratta pöörlemissagedust. 1.2.2. Katsetorustik

Gaaside ja vedelike voolamine
66 allalaadimist
thumbnail
15
docx

Hüdrodünaamika

13 ~380V 17 18 19 20 6 L 1 Joonis 1.3 Toitesüsteem pumbata vett pumbaga 16 paagist 1 paaki 23. Selleks avatakse pumba imemisavapoolne kraan 15 ja kraan 21. Oodatakse kuni õhk väljub pumbast ja torustikust ning käivitatakse pump. Pumba käivitamiseks tuleb ühendada sagedusmuundur 18 lüliti 20 abil vooluvõrku, vajutada nuppu "RUN" ning aeglaselt tõsta pumba tööratta pöörlemissagedust (voolu sagedust) kuni vesi voolab paagist 1 survepaaki 23. Üleliigne vesi survepaagis 23 peab ülevoolutorustiku 8 kaudu voolama paaki 1 ja veenivoo nivootorus 25 peab püsima muutumatuna. See saavutatakse muutes sagedusmuunduri 18 abil tsentrifugaalpumba tööratta pöörlemissagedust. 1.2.2. Katsetorustik 6

Gaaside ja vedelike voolamine
150 allalaadimist
thumbnail
35
xlsx

Laboriandmete arvutused exelis

Aeg Raadius Fraktsiooni suht. sis. t r Q Fraktsiooni suhteline sisaldus Q, % 280 1,18643019941 38,8235294118 Q=f(r) 600 158E-005 8,10486122707 52,9411764706 900 873E-006 6,61759148080 85,8823529412100 1200 348E-006 0,000005731 88,2352941176 1800 4,67934381119 90,5882352941 80 3000 846E-006 3,62460413039 100 60 460 008E-006 9,25640381222 61,1764705882 530 907E-006 8,62349415961 65,8823529412 40 0,00000362 0,00000462 0,00000562 0,00000662 0,00000762 0,000 600 916E-006

Füüsikalise keemia praktikum
69 allalaadimist
thumbnail
4
doc

Kodutöö

TALLINNA TEHNIKAKÕRGKOOL Ülesanne 1 Avaldada rõhk X mmHg paskalites, baarides ja megapaskalites, kui elavhõbeda tihedus on 13600 kg/m 3 . Antud: X= 3400 mmHg (millimeetrit elavhõbeda sammast) h=3,4 m =13600 kg/m 3 elavhõbeda tihedus g= 9,81 m/s 2 raskuskiirendus p=? (Pa, bar, MPa) rõhk Lahendus: p=h g (N/m 2 ) Rõhu mõõtühikuna on kasutusel paskal. 1 Pa= 1 N/m 2 1 bar = 10 5 Pa 1MPa=10 6 Pa p=3,4 13600 9,81=453614,4 Pa = 4,5 10 5 Pa = 4,5 bar = 0,45 MPa Vastus: Rõhk 3400 mmHg on 453614,4 Pa; 4,5 bar ja 0,45 MPa. Ülesanne 4 Torustikus voolab vedelik koguses q l/min. Leidke, milline peab olema torustiku minimaalne siseläbimõõt, mm, et tagada lubatud vedeliku voolukiirus v m /s. Valige sobiva läbimõõduga terastoru standartsete toru läbimõõtude reast ( toru läbimõõt ja seina paksus). Vt lisa 1. Millist maksi

Hüdraulika
142 allalaadimist
thumbnail
6
xlsx

Pumpade karakteristikud. protokoll

Vaakum- Sagedus Tootlikkus Võimsus Manomeeter Vaakummeeter Manomeeter meeter n (1/s) Q (m3/s) Ne (kW) (kgf*cm-2) mmHg Pa Pa 24,98 0,000325 0,15 0,4 60 39226,6 7999,3 24,98 0,000357 0,15 0,35 100 34323,275 13332,2 24,98 0,000204 0,15 0,2 175 19613,3 23331,4 24,98 0,000192 0,15 0,24 140 23535,96 18665,1 24,98 0,000363 0,15 0,39 40 38245,9 5332,9 21,58 0,000293 0,12 0,26 30 25497,3 3999,7 21,58 0,000256 0,12 0,26 45 25497,3 5999,5 21,58 0,000276 0,12 0,29 10 28439,3 1333,2 21,58 0,000169 0,12 0,27 10 26477,96 1333,2 21,58 0,000258 0,12 0,28 40 27458,6 5332

Keemiatehnika
56 allalaadimist
thumbnail
31
doc

ELEKTRIAJAMITE ÜLESANDED

6. ELEKTRIAJAMITE ÜLESANDED Tootmises kasutatakse töömasinate käitamiseks rõhuvas enamuses elektriajameid. Ka pneumo- ja hüdroajamid saavad oma energia ikka elektrimootoritega käitatavatelt kompressoritelt ja hüdropumpadelt. Elektriajam koosneb elektrimootorist ja juhtimissüsteemist, mõnikord on vajalik veel muundur ja ülekanne. Elektriajamite kursuse põhieesmärk on valida võimsuse poolest otstarbekas elektrimootor, arvestades ka kiiruse reguleerimise vajadust ja võimalikult head kasutegurit. Järgnevad ülesanded käsitlevad selle valikuprotsessi erinevaid külgi. 6.1. Rööpergutusmootori mehaaniliste tunnusjoonte arvutus Ülesanne 6.1 Arvutada ja joonestada rööpergutusmootorile loomulik ja reostaattunnusjoon. Mootori nimivõimsus Pn = 20 kW, nimipinge Un = 220 V, ankruvool Ia = 105 A, nimi- pöörlemissagedus nn = 1000 min-1, ankruahela takistus (ankru- ja lisapooluste mähised) Ra = 0,2 ja ankruahelasse on lülitatud lisatakisti takistu

Elektriajamid
53 allalaadimist
thumbnail
4
doc

Hüdro- ja pneumoseadmed

TALLINNA TEHNIKAKÕRGKOOL TALLINN COLLEGE OF ENGINEERING Hüdro- ja pneumoseadmed Iseseisva töö ülesanded Õppeaines: HÜDRAULIKA JA PNEUMAATIKA Transporidteaduskond Õpperühm: TLI-31 Üliõpilane: Indrek Kaar Juhendaja: Rein Soots Tallinn 2008 Ülesanne 1. Avaldage rõhk 250 mHg paskalites, baarides ja megapaskalites, kui elavhõbeda tihedus on 13600kg/m³. Anuma põhjale mõjub vedeliku kaalust tingituna surve, mis on sõltuv vedeliku samba kõrgusest h anumas ja vedeliku tihedus Antud: p= 250 mmHg = 13600 kg/m3 1 mmHg = 133,322 Pa 1 bar =105 Pa 250mmHg · 133,322 = 33330,5 Pa 33330,5 : 105 = ,0333 bar 0,333 : 10 = 0,033 MPa Leida: p = Pa-s, bar, MPa Vastus: Rõhk paskalites 33330,5 Pa, baarides ,0,333 bar ja megapaskalites 0,033 MPa. Ülesanne 2. Vertikaalselt paiknev hüdrosi

Hüdraulika ja pneumaatika
83 allalaadimist
thumbnail
5
doc

Füüsika 1 prax 6 Pöördliikumise dünaamika kontroll

Pöördliikumise dünaamika kontroll D = 40,00 ± 0,05 mm , n0 = 144,0 ± 0,5 cm , n1 = 33,0 ± 0,5 cm , m a = 61,40 ± 0,05 g Katse Mass Langemise aeg t , s Skaalanäit n2 , cm nr. m, g t1 t2 t3 t4 t5 t n 21 n 22 n 23 n 24 n 25 n2 1 156,5 9,78 9,75 9,77 9,73 9,73 9,752 47 48,5 47,5 47,5 49 47,9 0 2 200,3 8,68 8,67 8,69 8,70 8,71 8,690 46,5 46 47 46 45,5 46,2 0 3 295,2 7,36 7,34 7,35 7,36 7,37 7,356 45,5 45,5 46 46 45,5 45,7 0 4 326,2 7,00 7,02 7,01 6,96 6,95 6,988 45 45 44,5 45 45 44,9 5 m1 = 61,40 ± 0,05 + 95,10 ± 0,05 = 156,50 ± 0,10 g m2 = 61,40 ± 0,05 + 95,10 ± 0,05 + 43,80 ± 0,05 = 200,30 ± 0,15 g m3 = 61,40 ± 0,05 + 95,10 ±

Ökoloogia ja...
51 allalaadimist
thumbnail
15
pdf

Hüdraulika ja Pneumaatika

TALLINNA TEHNIKAKÕRGKOOL TALLINN COLLEGE OF ENGINEERING Kodused ülesanded Õppeaines: Hüdro- ja pneumoseadmed. Variant 4 Õpperühm: KMI 51/61 Üliõpilane: Margus Erin Kontrollis: Lektor Rein Soots Tallinn 2010 SISUKORD Ülesanne 2 ............................................................................................................................. 3 Ülesanne 3 ............................................................................................................................. 4 Ülesanne 4 ............................................................................................................................. 6 Ülesanne 6 ............................................................................................................................. 8 Ülesanne 8 ............................................................................................................................. 9 Üles

Hüdraulika
233 allalaadimist
thumbnail
6
doc

Hüdraulika ja pneumaatika koduse töö lahendatud ülesanded

Ülesanne 1 Avaldada rõhk 250mmHg paskalites, baarides, ja megapaskalites, kui elavhõbeda tihedus on 13600 kg/m3. Mõisted Kui elavhõbeda tihedus on ρ=13,5951 g/cm2 ja raskuskiirendus g=9,80665 m/s2, siis rõhk 1mmHg on paskalites 1mmHg  13,5951  9,80665  133,322387415 Pa 1 MPa = 106 Pa 1 bar = 105 Pa Vastus Kasutades eelolevaid rõhkude teisendusi ning enamkasutatud raskuskiirendus konstanti g=9.81 m/s2 saan elavhõbeda tiheduse korral ρ=13600 kg/m3=13,6g/cm3 rõhuks paskalites 1mmHg  13,6  9,81  133,416 Pa , mille puhul 250mmHg  250  133,416  33354 Pa  0,033354 MPa  0,33354bar Kasutatud allikad:  http://en.wikipedia.org/wiki/Torr#Manometric_units_of_pressure Ülesanne 3 Vertikaalselt paiknev hüdrosilinder peab tõstma koormust massiga 1000 kg. Milline peab olema koormust tõstva silindri minimaalne läbimõõt d mm, kui rõhk p süsteemis ei tohi ület

Hüdraulika ja pneumaatika
335 allalaadimist
thumbnail
16
xlsx

Kekskonnakaitse ja säästev arengu töövihiku excel 6-13 üles

Põlevkivi 663000 Tuhakogus Aastane tuhakogus Cd 39,3 3,4 0,153 117251,55 398,7 3,1 3,44 0,158 9248,85 31,8 4,7 0,9 0,479 14022,45 12,6 32,2 2 0,512 96068,7 192,1 4,4 0,77 0,347 13127,4 10,1 11 0,81 0,334 32818,5 26,6 3,1 1,48 0,429 9248,85 13,7 0,6 2,31 0,523 1790,1 4,1 0,1 4,79 0,403 298,35 1,4 1,5 4 0,421 4475,25 17,9 298350 709,0735 Hg 17,9 1,5 6,7 49,2 4,6 11,0 4,0 0,9 0,1 1,9 97,72961 Kütusekulu linnas 100000 Kütusekulu maanteel 100000 - +

Keskkonnakaitse ja säästev...
475 allalaadimist
thumbnail
25
doc

PROJEKT: ELEKTRIAJAMIGA TRUMMELVINTS

TALLINNA TEHNIKAÜLIKOOL MEHHATROONIKAINSTITUUT ELEKTRIAJAMIGA TRUMMELVINTS PROJEKT ÜLIÕPILANE: KOOD: JUHENDAJA: TALLINN 2010 TALLINNA TEHNIKAÜLIKOOL MEHHATROONIKAINSTITUUT MASINATEHNIKA PROJEKT MHE0062 l D v Projekteerida elektriajamiga vints. Tõstetav mass m = 680 kg Maksimaalne liikumiskiirus v = 0,1 m/s Trumli pikkus l = 300 mm Mootori ja trumli ühendus kettülekanne Esitada: seletuskiri, mastaabis eskiisid, koostejoonis, detaili joonised Joonis esitada formaadil A2 ­ A4 Töö välja antud: 05.02.2010.a.

Masinatehnika
102 allalaadimist
thumbnail
3
xlsx

Füüsika 2 Praktikum nr 10

nr Rs A1 A2 A3 A4 A1/A2 1 0 0,04 0,032 0,026 0,022 1,25 2 30 0,04 0,028 0,022 0,018 1,428571 3 60 0,04 0,026 0,018 0,014 1,538462 4 90 0,04 0,024 0,016 0,012 1,666667 5 120 0,04 0,022 0,014 0,01 1,818182 6 150 0,04 0,02 0,012 0,008 2 7 180 0,04 0,018 0,01 0,006 2,222222 nr r_s N l M t Teksp 1 0 4 0,056 0,0005 0,00001 0,014 0,8 2 180 1 0,014

Füüsika
166 allalaadimist
thumbnail
42
docx

Ehitusfüüsika ja energiatõhususe alused

Kodused ülesanded Õppeaines: Ehitusfüüsika ja energiatõhususe alused Ehitusteaduskond Õpperühm: KHE31 Juhendaja: Esitamiskuupäev:……………. Üliõpilase allkiri:……………. Õppejõu allkiri: …………… Tallinn 2017 Ülesanne 1. Arvuta operatiivne temperatuur kui ruumi õhu temperatuur on 17,5 ºC ja kiirgavate pindade keskmine temperatuur on 21,3 ºC. Õhu liikumiskiirus ruumis on 0,8 m/s. Andmed: Ts=17,5 ºC Tk=21,3 ºC v=0,8 m/s k = 0,7 v = 0,7...1,0 m/s Lahendus: top = k*ts + (1 – k) * tk top= 0,7*17,5 +(1-0,7)*21,3=18,64 ºC Ülesanne 3. Leia kui suur on ruumi CO2 sisaldus 3 tunni möödudes klassiruumis, kui tunni alguses oli CO2 sisaldus ruumis 322ppm-i. Üks inimene toodab tunnis 15ppm-i CO2-te. Ruumis oli 43 inimest. Hinda tulemuse vastavust II sisekliima klassi no

Üldgeodeesia
33 allalaadimist
thumbnail
6
xlsx

Keevkihi arvututsed

Tühi rest Keevkihikoonni diafragma: y=0,0054+0,0785x-0,0018x^2+0,00002^3 Resti takistus, Manomeetri sagedus näit, mmH2O delta P, mmH2O Õhu kiirus Resti takistuse s 0,0 0,0 0 0,0054 6 5,2 0,0 0 0,0054 4 prest 10,0 0,8 0,4 0,0671 2 15,3 2,8 0,8 0,2115 0 20,3 5,0 1,2

Gaaside ja vedelike voolamine
53 allalaadimist
thumbnail
14
doc

KODUTöö AINES "MASINATEHNIKA"

jagatav plaadi pinnal. Seega plaadile mõjuv jõud loeme samuti ühtlaselt jagatuks plaadi pinnal mg ning jõu intensiivsust võib leida võrrandist q = [1]. Lihtsustades arvutamist koondame l1l kogujõud plaadi tsentrisse. Siis plaadile mõjuv summaarne jõud on F=mg=200*9,81 2000 N 2 kN. Reaktsioonjõudude leidmine. m A =0 l1 R B l1 - F =0 2 l1 F N 2000 *1,5 RB = 2 = = 1000 l1 3,0 m B =0 l1 F l 2000 * 1,5 - R A l1 + F 1 = 0 R A = 2 = = 1000 N. 2 l1 3,0

Masinatehnika
230 allalaadimist
thumbnail
47
docx

EHITUSFÜÜSIKA JA ENERGIATÕHUSUSE ALUSED

Mikk Kaevats KODUSED ÜLESANDED Harjutusülesanded Õppeaines: EHITUSFÜÜSIKA JA ENERGIATÕHUSUSE ALUSED Ehitusteaduskond Õpperühm: HE 31B Juhendaja: lektor Leena Paap Esitamiskuupäev: 13.11.2017 Üliõpilase allkiri: M. Kaevats Õppejõu allkiri: .................. Tallinn 2017 ÜLESANNE 1 ÜLESANNE 1 Väärtus Ühik Ts 18 °C Tk 30 °C v 0,45 m/s Arvutada operatiivne temperatuur kui ruumi õhu temperatuur on 18 ºC ja kiirgavate pindade keskmine temperatuur on 30 ºC. Õhu liikumiskiirus ruumis on 0,45 m/s. Vale

Ehitusfüüsika
51 allalaadimist
thumbnail
6
doc

Füüsika praktikum nr 6 PÖÖRDLIIKUMINE

Tallinna Tehnikaülikooli Füüsika instituut Üliõpilane: Teostatud: Õpperühm: Kaitstud: Töö nr. 6 OT Pöördliikumine Töö eesmärk: Töövahendid: Pöördliikumise dünaamika Katseseade, raskuste komplekt. põhiseaduse kontrollimine. Skeem Töö teoreetilised alused. Pöördliikumise dünaamika põhiseadus annab seose jõumomendi M1 , inertsmomendi I ja nurkkiirenduse vahel M = (1) I Sellest järeldub, et konstanse inertsmomendi korral on nurkkiirendused võrdelised kehale mõjuvate jõumomentidega: ~M (2) Käesoleva töö eesmärgiks ongi seose (2) kontrollimine. Katseseade koosneb võllist 3, mis pöörleb kuullaagritel, ja vardast 2. Vardal on kaks võrdse massiga muhvi 4

Füüsika
889 allalaadimist
thumbnail
15
doc

HÜDROSTAATIKA

1.HÜDROSTAATIKA Tihedus on vedeliku massi ja ruumala suhe ehk ruumalaühiku mass m = , V mis laeva jaoks merevees laeva mingi massi ja mahulise veeväljasurve puhul on SW = , kus ­ SW on merevee tihedus; ­ ­ laeva massveeväljasurve; ­ ­ laeva mahuline veeväljasurve. SI süsteemis on tiheduse ühikuks kg/m3, kuid merenduses on levinum t/m3, sest tiheduse arvväärtus tuleb kolm suurusjärku väiksem. Erinevate vedelike tihedus on erinev ja normaaltingimustel näiteks: ­ merevesi SW = 1,025 t/m3; ­ magevesi FW = 1,000 t/m3; ­ diisliõli DO = 0,900 t/m3; ­ kütteõli HO = 0,950 t/m3. Kasutatakse ka suhtelise tiheduse (relative density, rd) mõistet, mis on antud aine tiheduse suhe

Laevade ehitus
59 allalaadimist
thumbnail
28
doc

HOONE ENERGIATÕHUSUSE ARVUTUSED NING TEHNOSÜSTEEMID

HOONE ENERGIATÕHUSUSE ARVUTUSED NING TEHNOSÜSTEEMID KURSUSETÖÖ Õppeaines: HOONETE EN.TÕHUSUS JA TEHNOSÜSTEEMID Ehitusteaduskond Õpperühm: KEI 62 Juhendaja: lektor Anti Hamburg Esitamiskuupäev:................ Allkiri:............................ Tallinn 2014 SISUKORD sisukord................................................................................................................................................2 Sissejuhatus......................................................................................................................................... 4 1. Hoone soojuskadude leidmine..........................................................................................................5 1.1 Hoone välispiirete lõiked koos soojuserijuhtivuse arvutustega...............

Tehnoseadmed
266 allalaadimist
thumbnail
4
pdf

Tehniline mehaanika II Labor 4 - Paindekatse

Tallinna Tehnikaülikool Ehituse ja arhitektuuri instituut Konstruktsiooni- ja vedelikumehaanika õppetool LABORATOORNE TÖÖ nr. 4 Paindekatse Üliõpilane: Alisa Rauzina Matrikli nr: 153943 Rühm: EAUI 61 Juhendaja: Mirko Mustonen Kuupäev: 27.03.18 Tallinn 2018 1. Töö eesmärk: Võrrelda terastala koormamisel tekkivaid siirdeid ja pingeid arvutuslike väärtustega. 2. Kasutatud tööriistad: · Tensoandurid 4tk · Mõõtekell · Paindekatse masin (universaalkatsemasin) 3. Katseskeem Joonis 1. Katseskeem 4. Saadud andmed 4.1. Kesklõike siire Tabel 1. Kesklõike siire Kesklõike siire Jrk. Algkoormus Jõud F Mõõteindikaato katseline arvutuslik

Ehitusmaterjalid
39 allalaadimist
thumbnail
65
doc

AM kordamiskusimused lopueksamiks ( vastused)

Küsimus 1. 1. Pumpade kasutusalad Pümba tööd iseloomustavad järgmised parameetrid: M ­ manomeeter näitab rõhku selles paigas, kus ta ise on (sest manomeetri toru on vett täis) Rõhk pumba survetorus p = M+ zm , kus zm on kõrgusvahest põhjustatud rõhk. V ­ vaakum ehk rõhk imitoru selles punktis kuhu vaakummeeter on ühendatud. Pumpade tööparameetrid. Pumba tööd iseloomustavad järgmised parameetrid: 1. Imemiskõrgus hi (m), 2. Kavitatsioon ja kavitatsioonivaru h (m) - ingliskeelses kirjanduses NPSH - net positive suction head ehk lubatav vaakum pumba Tööpiirkonnas, H lub/vac(m), 3. Tõstekõrgus e. surve ( H - m veesammast ), 4. Tootlikkus (jõudlus , vooluhulk) 5. Tarbitav võimsus P (kW), 6. Kasutegur ( absoluutarv või % ), 7. Tööorgani liikumissagedus n ( pöörlemis-või käigusagedus p /min või käiku/minutis ). 1 Küsimus 2

Abimehanismid
121 allalaadimist
thumbnail
25
doc

Vundamendid

TTÜ Ehitiste projekteerimise instituut Vundamendid Projekt Üliõpilane:Üllar Jõgi Juhendaja: Johannes Pello Õpperühm: EAEI Kuupäev: 07.06.2008 1. Koormused Lumekoormus 5000 6000 5000 ?2 = 0.93 ?1 = 0.8 ?2 = 0.93 qsk3 = 1,4 kN/ m² qsk1 = 1,2 kN/ m² qsk3 = 1,4 kN/ m² 120 120 120 120 60 120 120

Vundamendid
305 allalaadimist
thumbnail
90
pdf

Tee-ehitus I projekt

Pikett 0+00 1+00 2+00 2+38,03 3+00 3+75,86 4+00 4+45,16 5+00 5+25,76 6+00 7+00 7+20 7+66,2 8+00 9+00 9+14,44 10+00 10+98,72 11+00 12+00 12+94,44 13+00 14+00 15+00 16+00 17+00 18+00 19+00 19+28,57 20+00 21+00 21+28,57 21+55 22+00 23+00 23+65,17 24+00 25+00 25+7,81 26+00 26+11,43 26+25,96 26+27,7 26+55 26+59,64 26+75 27+00 27+0,22 27+32,3 27+34,07 27+48,82 27+50 28+00 29+00 30+00 Töömahtude koondtabel Algpikett 0+00 1+00 2+00 3+00 4+00 5+00 6+00 7+00 8+00 9+00 10+00 11+00 12+00 13+00 14+00 15+00 16+00 17+00 18+00 19+00 20+00 21+00 22+00 23+00 24+00 25+00 26+00 27+00 28+00 29+00 Masinvahetuste arvu määramine Kasvupinnase eemalda

Betooni puurimine
28 allalaadimist
thumbnail
21
doc

Diiselmootori ehitus, teooria ja ekspluatatsioon

EESTI MEREAKADEEMIA Laevamehaanika kateeder Kursuseprojekt õppeaines: Laeva diiseljõuseadmed Diiselmootori ehitus, teooria ja ekspluatatsioon Kadett: Jegor Kulesov Õpperühm: MM41 Juhendaja: Jaan Läheb Tallinn 2012 Sisukord: 1-4 Arvutustes vajalike andmete valik ja põhjendus...................................................................6 2. Arvutuslik osa..............................................................................................................................7 2-1 Töötsükli ja energeetilis-ökonoomiliste näitajate kontrollarvutus mootori prototüübi ja antud andmete põhjal...................................................................................................................7 2-2 Kütuse erikulu ja ööpäevase kulu muutus üleminekuga kõrgema kütteväärt

Masinaelemendid
39 allalaadimist
thumbnail
17
docx

HÜDRODÜNAAMIKA ALUSED

13 ~380V 17 18 19 20 6 L 1 Joonis 1.3 Toitesüsteem 1) pumbata vett pumbaga 16 paagist 1 paaki 23. Selleks avatakse pumba imemisavapoolne kraan 15 ja kraan 21. Oodatakse kuni õhk väljub pumbast ja torustikust ning käivitatakse pump. Pumba käivitamiseks tuleb ühendada sagedusmuundur 18 lüliti 20 abil vooluvõrku, vajutada nuppu "RUN" ning aeglaselt tõsta pumba tööratta pöörlemissagedust (voolu sagedust) kuni vesi voolab paagist 1 survepaaki 23. Üleliigne vesi survepaagis 23 peab ülevoolutorustiku 8 kaudu voolama paaki 1 ja veenivoo nivootorus 25 peab püsima muutumatuna. See saavutatakse muutes sagedusmuunduri 18 abil tsentrifugaalpumba

Keemiatehnika
190 allalaadimist
thumbnail
19
pdf

Hüdraulika teoreetilised alused ja Füüsikalised suurused

Tallinna Tööstushariduskeskus Hüdraulika teoreetilised alused 2 Hüdraulika teoreetilised alused Raskusjõud = mass × raskuskiirendus 2.1 Füüsikalised suurused F = 1 kg × 9,81 m/s2 =9,81 N Jõu mõõtühikuks SI-süsteemis on Mass m njuuton. Inertsi ja gravitatsiooni iseloomustaja Rõhk p ning mõõt. Keha mass on SI-süsteemi põhiühik. Massi mõõtühikuks SI- Suurus, mis iseloomustab keha pinna süsteemis on kilogramm. mingile osale risti mõjuvaid jõude. Rõhk on vedelikke sisaldavate protsesside Jõud F kirjeldamisel üks tähtsaim parameeter. Pinnaga A risti mõjuv jõud F tekitab Kehade vastastikuse mehaanilise mõju rõhu p:

hüdroõpetus
63 allalaadimist
thumbnail
5
docx

Hüdraulika kodune töö nr 3

Ühisveevarustuse süsteemi iseloomustavad suurused on toodud (Tabel 2) ning veetarbimist iseloomustavad suurused on toodud (Tabel 1). Kinemaatiline viskoossus () = 1,308 * 10-6 m Maksimaalne lubatud kiirus torudes (v) = 0,8 m/s Toru ekvivalentkaredus (e) = 0,1 mm Pumba kasutegur () = 0,6 Ajami kasutegur (a) = 0,95 Ülesanne: Dimensioneerida ühisveevarustussüsteemi torud Dimensioneerida ühisveevarustussüsteemi toitev pump Leida dimensioneeritud pumba vajalik ajami võimus Koosta ühisveevärgi torustikeskeem ja kannaskeemile: o toru materjal, välisläbimõõt, pikkus o pumba vooluhulk ja tõstekõrgus PE De ­ 140 500m PE De ­ 200 400m PE De ­ 315 100m

Hüdraulika
23 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun