Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Tuumaenergeetika lühidalt (0)

1 Hindamata
Punktid

Lõik failist

Tuumaenergeetika lühidalt #1
Punktid 10 punkti Autor soovib selle materjali allalaadimise eest saada 10 punkti.
Leheküljed ~ 1 leht Lehekülgede arv dokumendis
Aeg2011-05-23 Kuupäev, millal dokument üles laeti
Allalaadimisi 12 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor RaitMadissoo Õppematerjali autor
Räägib tuumaenergeetikast. Kõik vajalik lühekeseks ettekandeks füüsikas.

Sarnased õppematerjalid

thumbnail
2
doc

Tuumaenergia

Reaktoris luuakse tuumaenergia tootmiseks kontrollitud ahelreaktsioon, kus energia vabaneb soojusena. Viimast rakendatakse vee kuumutamiseks ja auru tekitamiseks, auru abil pannakse tööle elektrienergia tootmiseks kasutatavad turbogeneraatorid. Kontrollitud ahelreaktsiooni käigus pommitatakse suure massiarvuga tuumi aeglustatud neutronitega, protsessi tulemusel liitub neutron tuumaga põhjustades viimase ergastatud oleku.. Tuumajõudude tõttu lõhustub ergastunud tuum kaheks erineva massiga osaks (kildtuumaks), põhjustades nii kahe uue isotoobi tekke. Lisaks isotoopide tekkele eraldub lõhustumisel alati ka neutroneid ning gamma-kiirgust. Analoogiliselt lõhustub näiteks reaktorites kütusena kasutatav U-235 kaheks väiksema massiarvuga isotoobiks ning sellise protsessi käigus vabaneb suur kogus energiat. Reaktorid jaotatakse nelja põlvkonda kuuluvateks. Enamus kasutusel olevatest jaamadest kuulub kas teisse või kolmandasse põlvkonda

Füüsika
thumbnail
3
docx

Tuumaenergia referaat

energia vabaneb soojusena. Viimast rakendatakse vee kuumutamiseks ja auru tekitamiseks, auru abil pannakse tööle elektrienergia tootmiseks kasutatavad turbogeneraatorid. Kontrollitud ahelreaktsiooni käigus pommitatakse suure massiarvuga tuumi aeglustatud neutronitega, protsessi tulemusel liitub neutron tuumaga põhjustades viimase ergastatud oleku.. Tuumajõudude tõttu lõhustub ergastunud tuum kaheks erineva massiga osaks (kildtuumaks), põhjustades nii kahe uue isotoobi tekke. Lisaks isotoopide tekkele eraldub lõhustumisel alati ka neutroneid ning gammakiirgust. Analoogiliselt lõhustub näiteks reaktorites kütusena kasutatav U235 kaheks väiksema massiarvuga isotoobiks ning sellise protsessi käigus vabaneb suur kogus energiat. Tuumkütus Kuna looduses leiduv uraan sisaldab peamiselt isotoopi U238 ja väga vähesel

Geograafia
thumbnail
5
docx

Tuumaenergia

Tuumaenergia Koostas: Juhendas : Tuumaenergia ehk aatomienergia on füüsika seisukohast aatomituuma moodustavate elementaarosakeste süsteemi seoseenergia, mis võib tuumareaktsioonides vabaneda. Energeetika seisukohast on see elektrienergia, mida saadakse tänu tuumareaktsioonidele tuumaelektrijaamades. Tuumaelektrijaamades on võimalik toota elektrienergiat suures koguses, ökonoomselt ja õhusaastevabalt. Uuringud näitavad, et tuumaenergiast saadud elekter on söest toodetust isegi odavam. Tänapäeval annavad tuumaelektrijaamad 17% kogu elektrienergiast, peaaegu sama palju kui hüdroelektrijaamad. Tuumaelektrijaamas kasutatakse kütusena uraani, mille varusid arvatakse

Loodus
thumbnail
14
odt

Tuumaenergia kasutamine, füüsika

Geotermaalelektrijaamad 0.3 Päikeseelektrijaamad Tuuleelelektrijaamad 0.06 0.01 0 Hüdroelektrijaamad Geotermaalelektrijaamad Päikeseelektrijaamad Põlevkütus-soojuselektrijaamad Tuumaelektrijaamad Tuuleelelektrijaamad Vajadus tuumaenergia järele 21. sajandi alguses võib täheldada selgeid märke tuumaenergeetika taassünnist, mida tõukavad tagant elanikkonna arvukuse kasv, vajadus energia järele, fossiilkütuste varude kahanemine, nende kasvavad hinnad ja tarnijamaade poliitiline ebastabiilsus, mure globaalse soojenemise pärast. Eeldused taassünniks on kaalukad ja põhjendatud, sest tuumaenergia on CO2-vaba keskkonda mittesaastav ohutu kontsentreeritud baasenergiaallikas ja juba praegu üks peamisi energiaressursse (annab näiteks 31 % Euroopa Liidu elektrist).

Füüsika
thumbnail
11
doc

Tuumaenergia kasutamine

VI Tuumariigid VII Varitsev oht lk 6 VIII Tuumaenergia kasutamine Eesti lähisriikides lk 7 IX Korduma kippuvad küsimused lk 8 X Kokkuvõte lk 10 Kasutatud materjalid lk 11 2 I. Tutvustuseks Tuumaenergia ehk aatomienergia on füüsika seisukohast aatomituuma moodustavate elementaarosakeste süsteemi seoseenergia, mis võib tuumareaktsioonides vabaneda. Energeetika seisukohast on see elektrienergia, mida saadakse tänu tuumareaktsioonidele tuumaelektrijaamades. Tuumaelektrijaamades on võimalik toota elektrienergiat suures koguses, ökonoomselt ja õhusaastevabalt. Uuringud näitavad, et tuumaenergiast saadud elekter on söest toodetust isegi odavam. Tänapäeval annavad tuumaelektrijaamad 17% kogu elektrienergiast, peaaegu sama palju kui hüdroelektrijaamad. Tuumaelektrijaamas kasutatakse kütusena uraani, mille varusid arvatakse

Füüsika
thumbnail
9
doc

Tuumajaam

Reaktoris luuakse tuumaenergia tootmiseks kontrollitud ahelreaktsioon, kus energia vabaneb soojusena. Viimast rakendatakse vee kuumutamiseks ja auru tekitamiseks, auru abil pannakse tööle elektrienergia tootmiseks kasutatavad turbogeneraatorid. Kontrollitud ahelreaktsiooni käigus pommitatakse suure massiarvuga tuumi aeglustatud neutronitega, protsessi tulemusel liitub neutron tuumaga põhjustades viimase ergastatud oleku.. Tuumajõudude tõttu lõhustub ergastunud tuum kaheks erineva massiga osaks (kildtuumaks), põhjustades nii kahe uue isotoobi tekke. Lisaks isotoopide tekkele eraldub lõhustumisel alati ka neutroneid ning gamma-kiirgust. Analoogiliselt lõhustub näiteks reaktorites kütusena kasutatav U-235 kaheks väiksema massiarvuga isotoobiks ning sellise protsessi käigus vabaneb suur kogus energiat. Tuumajaama plussid ja miinused Plussid 1. Suur energiasaagis, s.o toodetud elektrienergia hulk toormemassi kohta. 2

Aineehitus
thumbnail
2
docx

Tuumaenergia

TUUMAENERGIA Tuumaenergeetika erineb oluliselt teistest energia saamise viisidest. Tuumaenergiat loetakse säästvaks, sest energia tootmise protsessis ei eraldu CO2. Samas võib tuumajaamaga kaasneda oht radioaktiivse saaste kandumiseks keskkonda.. Lisaks eraldub , nii nagu teistestki elektrijaamadest, suurtes kogustes (mitteradioaktiivset) veeauru ja alati on energia saamisega seotud kaudsed emissioonid. KASU. Tuumaenergiat on kasutatud elektri tootmisel juba 50 aastat. Selle aja jooksul on tuumaenergeeti ka läbinud pika arengutee. Praeguseks on ehitatud ligi pooltuhat erineva konstruktsioon iga tuumajaama. Elektrienergia t vajatakse üha enam. tuumaenergia on üks suuremaid elektrienergia allikaid, 443 tuumajaamas üle maailma toodetakse 17% kogu elektrienergia st ja seda kasutab umbes miljard inimest. tuumaenergia kasutamine on elektri tootmiseks paratamatu mitmel põhjusel. Esiteks, ei saa lõputult jätkuda seni domineerinud fossiilsete kütus

Füüsika
thumbnail
20
pdf

Tuumaenergia

kasvuks prognoositakse 1,6%. Seda kõike silmaspidades, suureneb järjest vajadus leida alternatiive fossiilkütustel töötavatele elektrijaamadele. Üheks populaarsemaks alternatiiviks on viimaste aastatega tõusnud tuumaenergia tootmine ja kasutamine. Ka Eestis on energeetikaprobleemid tõusnud lähiaastatega üha aktuaalseimaks. Keskkonnasõbraliku elektritootmise organiseerimine vajab otsustavat lahendust lähiaastail, ning on vajalik vastu võtta konkreetne otsus võimaliku tuumaenergeetika rakendamise kohta Eesti Vabariigis. Euroopa Liidu üha karmistuva kliima- ja energiapoliitika tingimustes tuleb Eestil tõsiselt mõelda selle üle, mille arvel katame oma elektrivajadusi tulevikus. Eestis toodetakse praegu üle 90% elektrienergiast põlevkivist ning ka kõige nüüdisaegsemate tehnoloogiate kasutamisel eraldub põlevkivist elektrit tootes suures koguses CO2 ehk kasvuhoonegaasi. Oma energiatootmise keskkonnasõbralikumaks muutmiseks tuleb Eesti Energial

Ökoloogia ja keskkonnakaitse




Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun