Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Dosimeetria (0)

1 Hindamata
Punktid
Vasakule Paremale
Dosimeetria #1 Dosimeetria #2 Dosimeetria #3 Dosimeetria #4 Dosimeetria #5 Dosimeetria #6 Dosimeetria #7 Dosimeetria #8 Dosimeetria #9 Dosimeetria #10 Dosimeetria #11
Punktid 100 punkti Autor soovib selle materjali allalaadimise eest saada 100 punkti.
Leheküljed ~ 11 lehte Lehekülgede arv dokumendis
Aeg2011-01-03 Kuupäev, millal dokument üles laeti
Allalaadimisi 8 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor miisu28 Õppematerjali autor
põhimõisted

Sarnased õppematerjalid

thumbnail
144
doc

Radiobioloogia ja kiirguskaitse

ülesvõtteparameetrid, mille korral röntgenfilmi optiline tihedus ei muutuks rohkem kui 10% i. i. Konstantsustestide tehakse olemasolevate võimaluste piires regulaarselt, lubamatu on tööle asuda uue aparaadiga, millel testid on tegemata. Isikudosimeetria Meditsiinikiiritust kasutava personali kutsekiiritust hinnakse isikudosimeetriaga. Dooside suurust on vaja teada kiirgusohu hindamiseks. Dosimeetria põhineb kiirguse poolt aines põhjustatud füüsikaliste ja/või keemiliste muutuste kvantitatiivsel hindamisel. Mõõdetakse kas ekspositsiooni, mis siis arvutuslikult muudetakse doosiks, või neeldunud doosi. Mõõdetud doosid registreeritakse ja neid võrreldakse sarnasel kiirgustööl varem saadud doosidega. 1. 1. Kiirgustöötajate individuaaldoose mõõdetakse termoluminestsents- dosimeetritega (TLD). See on rutiinne tegevus. 2. 2

Bioloogia
thumbnail
2
doc

Kiirguskaitse

B. Kirjelda lühidalt ioniseeriva kiirguse poolt tekitatud stohhastiliste ja deterministlike bioloogiliste efektide erinevusi. - Stohhastiline efekt ­ ilmneb mingi aja möödudes erinevate kasvajate näol. Kiirguse hulk suurendab võimalust vähki või muusse kasvajasse haigestuda, kuid ei määra kasvaja iseloomu. Puudub lävidoos. - Deterministlik ­ suure kiirgusdoosi tulemusel. Sümptomid esinevad päeva-paari jooksul. Nt oksendamine, naha punetus. Haigestumine nt kiirgustõppe. Efekt ilmneb inimesel juhul, kui kiirgusdoos ületab teatud efektile omast läviväärtust. Kui suure efektiivdoosi põhjustab 0,01 Gy alfakiirgust kopsudele? 0,01 Gy * 0,12 * 20 = 0,024 Sv Po-210 allika poolt põhjustatud doosikiiruseks mõõdeti 24 mikroSv/h. Teades, et Po- 210 poolestusaeg on 138,38 päeva, ning eeldades, et kiirgusallika poolt tekitatatud doosikiirus on otseses sõltuvuses tuumade arvust allikas, kui suure doosi põhjustab kirjeldatud Po-210 allikas 3 aasta möödudes? D0= 24 Sv/h

Kiirguskaitse
thumbnail
36
ppt

Kiirgus ja Kiirguskaitse

KIIRGUSKAITSE Algus: Kiirgus ja ajalugu 1895 Röntgen avastas X-kiired 1896 märked esimesest naha põletusest 1896 esmakordselt kasutati röntgenkiiri vähi ravimisel 1896 Becquerel teatas radioaktiivsuse avastamisest 1897 esimesed naha kahjustuste teated 1902 esimene rõntgenkiirtest põhjustatud vähi juhtum 1903 katsed rottidega tõestasid, et kiirgus võib põhjustada leukeemiat ja steriilsust 1911 esimene teatatud leukeemia ja kopsuvähi juhtum, mille puhul osati seostada seda töö käigus saadud kiiritusega 1911 94 kasvaja juhtumit tehti teatavaks Saksamaal (50 neist olid radioloogid) Kiirguskaitse: Radium Luminous Materials Company New Jersey's (USA), 1915: "raadiumilõuad" 1898. detsembriks olid Marie ja Pierre Curie eraldanud puhta raadiumi esimene radioloogide kongress Londonis, 1925 Rahvusvaheline Radioloogilise Kaitse Komisjon (ICRP), 1928 alates 1950-ndatest lisandus tuumaenergeetika

Füüsika
thumbnail
3
doc

Kiirguskaitse konspekt

a-kiirgus. Alfakiirgus koosneb a-osakestest, mis osutusid tuumadeks 2He4 b-kiirgus. Beetakiirgus koosneb kiiretest elektronidest või positronidest, mis liiguvad kiirusega ~c g-kiirgus. Gammakiirgus osutus eriti lühilaineliseks elektromagnetiliseks kiirguseks, mis koosneb footonitest. Footonitel puudub mass ja kõik elektromagnetilised kiirgused levivad vaakumis sama kiirusega kui valgus alfakiirgus ­ kaks prootonit + kaks neutronit ehk He tuum Alfalagunemisel väheneb Massiarv (A) 4 võrra Laengu arv (Z) 2 võrra Tekib uue keemilise elemendi tuum Alati kaasneb ka gammakiirgus Alfaosake on He tuum Pole suure läbitungimisvõimega, varjestuseks piisab paberilehest Õhus teepikkus 1-2 cm Emiteeritakse suurte ebastabiilsete tuumade poolt Pole oluline ohuallikas Raske detekteerida beetakiirgus ­ suure energiaga elektronid Beetalagunemisel qMassiarv (A) ei muutu Laengu arv (Z) suureneb/väheneb ühe võrra Beetaosake on Elektron Positron Tekib uue keemilise elemendi tuum Tavaliselt ka

Kiirguskaitse
thumbnail
12
odt

Radioaktiivse kiirguse registreerimine

.......................................................................3 1. AJALUGU.......................................................................................................................................4 2. IONISEERIV KIIRGUS..................................................................................................................4 3. KIIRGUSE LIIGID.......................................................................................................................4-6 4. DOSIMEETRIA ALUSED...........................................................................................................6-7 5. KIIRGUSMÕÕTMISE MEETODID...........................................................................................7-8 6. MOBIILMÕÕTMISED...................................................................................................................8 7. PORTATIIVSED MÕÕTMISED...............................................................................................

Kiirguskaitse
thumbnail
3
docx

Tuumafüüsika

aatomituum Koosneb nukleonidest ­ prootonitest ja neutronitest, mida hoiavad koos tuumajõud. Prootoni laeng on + e, neutronil laeng puudub. Mõlema mass on (aatommassiühik, Mendelejevi tabelis on massid antud nendes ühikutes, 1 u on 1/12 süsinik-12 isotoobi aatomi massist) Tuuma on koondunud suurem osa aatomi massist. Tuuma mõõtmed ­ läbimõõt 10-14 m Keemilise elemendi tähis A ­ aatomi massiarv, nukleonide (prootonite + neutronite arv, ligikaudne aatomi mass aatommaassiühikutes Z ­ keemilise elemendi järjekorranumber, prootonite arv, elektronide arv neutraalses aatomis, tuuma laeng elementaarlaengutes N ­ neutronite arv, isotoobid On keemilise elemendi aatomid, mille tuumades on sama arv prootoneid,

Füüsika
thumbnail
4
doc

12 kl. 3. KT TUUMAFÜÜSIKA kordamisküsimused

12 kl. 3. KT TUUMAFÜÜSIKA kordamisküsimused. tuumajõud – prootonite ja neutronite vahel mõjuv jõud tuumas, mis hoiab tuuma koos. Elektrilisest jõust oluliselt tugevam, mõjuulatus on väga väike ja ei sõltu tuumaosakese laengust. seoseenergia – näitab, kui suur energia tuleb tuumaosakesele anda, et ta eralduks tuumast. Laenguarv Z – näitab laetud osakeste (prootonite) arvu tuumas. (Aatomis ka elektronide arvu.) Võrdne perioodilisustabeli järjekorranumbriga. Massiarv A – näitab prootonite ja neutronite koguarvu aatomituumas. Neutronite arv N. (A=Z+N) Isotoop – on keemilise elemendi teisend, milles prootonite arv on sama kuid neutronite arv on erinev. Stabiilne ja radioaktiivne tuum – stabiilne tuum püsib muutumatu, radioaktiivne tuum muundub iseenesest. Radioaktiivsus – radioaktiivsest tuumast vabanevat kiirgust nimetatakse radioaktiivseks kiirguseks. α-kiirgus – heeliumi tuumade voog, tekib siis kui radioaktiivse tuuma mass on liiga suur ja seetõttu tu

Füüsika
thumbnail
15
doc

Füüsika konspekt

TUUMAFÜÜSIKA KONSPEKT Uurimuste käigus on selgunud, et aatomi tuuma struktuur on väga keeruline ja see ei ole tänapäevani lõplikult selge. Aatomi tuum mõjutab otseselt elektronkatte struktuuri, sest see kujuneb tuuma positiivse laengu mõju väljas.Tuum valitseb oma elektrilaenguga elektrone tänu elektrilise mõju kaugeleulatuvusega. Aatomi kvantmehaanilises mudelis määrab üheselt elektronkatte kihilise struktuuri elektronide koguarv Tuum tervikuna määrab ära elektronide arvu aatomi elektronkattes ja nende asetuse valemiga 2 n 2 . Muus osas on aatom ja selle tuum täiesti eraldi vaadeldavad, sest neid eraldavad ruumilises ulatuses viis suurusjärku. Kui välja arvata prootonite arv, siis tuuma siseehitus aatomi elektronkattele mõju ei avalda ja tuum ise on on elektronkatte uurimise vahenditele kättesaamatu. Seepärast käsitletakse tuumamudelit täiesti eraldi, kuigi see peaks olema osa aatomimudelist. Tuum koosneb nukleonidest. Jõud nende osakeste vahel

Füüsika




Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun