Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Elektriahelad ja elektroonika alused, praktikum 2 (0)

1 Hindamata
Punktid

Lõik failist

TALLINNA TEHNIKAÜLIKOOL 
Elektrotehnika  laboratoorium 
 
Üliõpilane:  
 
Töö on tehtud 
Matrikli nr.  
1. töörühm 
Aruanne on esitatud 
Juhendaja :  
Elektrotehnika 
Töö nr. 2 
ÜHEFAASILISED VAHELDUVOOLUAHELAD 
Variant A. VÕIMSUSTEGURI  PARENDAMINE
VOOLURESONANTS 
Katseobjektid 
Kasutatud seadeldised 
 
 
 
Vasakule Paremale
Elektriahelad ja elektroonika alused-praktikum 2 #1 Elektriahelad ja elektroonika alused-praktikum 2 #2 Elektriahelad ja elektroonika alused-praktikum 2 #3 Elektriahelad ja elektroonika alused-praktikum 2 #4 Elektriahelad ja elektroonika alused-praktikum 2 #5 Elektriahelad ja elektroonika alused-praktikum 2 #6
Punktid 50 punkti Autor soovib selle materjali allalaadimise eest saada 50 punkti.
Leheküljed ~ 6 lehte Lehekülgede arv dokumendis
Aeg2016-02-28 Kuupäev, millal dokument üles laeti
Allalaadimisi 167 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor 238516 Õppematerjali autor

Sarnased õppematerjalid

thumbnail
3
xls

EEA labor 2

Arvutustulemused Jrk P P1 cos 1 cos 2 Carv Z2 R2 X2 L2 nr W W - - - F H 1. 9,130 40,130 0,772 0,440 0,360 0,000 128,049 46,104 119,461 0,408 Cres= 23,19 F 2. 6,745 38,745 0,826 0,496 0,372 3,638 128,049 47,591 118,876 0,408 3. 5,084 37,084 0,863 0,544 0,372 7,427 128,049 47,591 118,876 0,408 4. 3,250 36,250 0,910 0,659 0,375 11,862 127,711 47,902 118,387 0,407 5. 2,184 35,184 0,938 0,762 0,375 15,015 127,711 47,902 118,387 0,407 6. 1,620 34,620 0,953 0,874 0,371 18,918 126,190 46,769 117,204 0,402 7. 1,386 34,386 0,960 0,947 0,371 21,921 126,190 46,769 117,204 0,402 8. 1,656 35,656 0,954 0,900 0,378 26,774 127,381 48,186 117,915 0,405 9. 2,478 36,478 0,932 0,790 0,378 29,749 127,38

Elektriahelad ja elektroonika alused
thumbnail
4
pdf

Ühefaasilised vahelduvooluahelad: Võimsusteguri parendamine, voolu resonants

Katsetulemused 2A Ühefaasilised vahelduvooluahelad: Võimsusteguri parendamine, voolu resonants U₁ (V) ΔU (V) U₂ (V) I₁ (A) Ic (A) I₂ (A) P₂ (W) f (Hz) C (µF) α C α*C α C α*C α C α*C α C α*C α C α*C α C α*C α C α*C 50 10,5 110 300/150 220 114 15/150 11,4 104 300/150 208 100 0,25/100 0,25 77 1/5*5/100 0,77 82 1/100 0,82 26 300*1/150 52 50 12,5 110 300/150 220 130 15/150 13 104 300/150 208 58 0,5/100 0,29 91 1/5*5/100 0,91 82 1/100 0,82 26 300*1/150 52 50 14,5 110 300/150 220 108 30/150 21,6 102 300/150 204 73

Elektotehnika 1
thumbnail
10
docx

Homogeene liin

Tallinna Tehnikaülikool Elektroenergeetika aluste ja elektrimasinate instituut Elektrotehnika II Kodutöö nr 5 (Var 11) Homogeene liin Tallinn 2017 Algandmed f =600 Hz l=200 km Ω R0=5.5 km nF C0 =10 km mH L0=3 km μS G0=0.65 km U 2=60 V I 2 =52.1mA 0 ψ 2=12.42 1. Arvutada pinge U1 ja vool I1 liini alguses aktiivvōimsus P ja näivvōimsus S liini alguses ja lōpus ning liini kasutegur η ω=2∗f∗π =2∗600∗3.14=3768 I ' 2 =I 2∗eiψ 2=52,1∗10−3∗e 12,42 j=52,1∗10−3∗( cos 12.42+ jsin 12.42 )=0.051+ j 0.011=0.052∠ 12.17 −3 0 Z 0 =R 0 +ω∗L0∗ j=5.5+3768∗3∗10 j=5.5+ j 11.3=12,57 ∠ 64,05 −6 −9

Elektrotehnika 2
thumbnail
70
docx

Mis on elektrilaeng ja millised tema 5 põhiomadust.

U Ohmi seaduse valemi kuju I= Voolutugevus on võrdeline pingega ja R pöördvõrdeline takistusega Ohmi seadus graafiliselt I-U teljestikus R2 elektroonika komponente nimetatakse varistoriks. Varistore kasutatakse elektri- ja elektroonikalülituste kaitsmiseks toiteliini kaudu saabuvate liigpingete eest, samuti pinge ülevõngete piiramiseks, nt. vahelduvvooluahelais induktiivsusi sisaldavate ahelate katkestamisel. Varistor ühendatakse kaitstava ahelaga rööbiti. Tuletage Ohmi seadus kogu ahela kohta. Lähtuge seosest: U 12=E12 +φ1−φ2 U E+φ1 −φ2

Füüsika
thumbnail
138
pdf

Elektrotehnika alused

ELEKTROTEHNIKA ALUSED Õppevahend eesti kutsekoolides mehhatroonikat õppijaile Koostanud Rain Lahtmets Tallinn 2001 Saateks Raske on välja tulla uue elektrotehnika aluste raamatuga, eriti kui see on mõeldud õppevahendiks neile, kes on kutsekoolis valinud erialaks mehhatroonika. Mehhatroonika hõlmab kõike, mis on vajalik tööstuslikuks tehnoloogiliseks protsessiks, ning haarab endasse tööpingi, jõumasinad ja juhtimisseadmed. Toote valmistamiseks kasutatakse tööpingis elektri-, pneumo- kui ka hüdroajameid, protsessi juhitakse arvuti ning elektri-, pneumo- ja/või hüdroseadmetega. Mida peab tulevane mehhatroonik teadma elektrotehnikast? Mille poolest peab tema elektrotehnika- raamat erinema neist paljudest, mis eesti keeles on XX sajandil ilmunud? On ju põhitõed ikka samad. Käesolev raamat on üks võimalikest nägemustest vastuseks eelmistele küsimustele. Selle koostamisel on lisaks paljudele e

Mehhatroonika
thumbnail
30
docx

Füüsika eksam vastustega: liikumine

Füüsika eksam 1. Liikumise kiirendamine. Taustsüsteem on mingi kehaga seotud ruumiliste ja ajaliste koordinaatide süsteem. Kohavektor on vektor, mille alguspunkt ühtib koordinaatide alguspunktiga. Trajektoor on keha või ainepunkti teekond liikumisel ruumis või tasandil. Trajektoori saab korrektselt kasutada ainult punktmassi korral. Kiirus on vektoriaalne suurus, mis võrdub nihke ja selle sooritamiseks kulunud ajagavahemiku suhtega(kiirusvektor on igas trajektoori punktis suunatud mööda trajektoori puutujat selles punktis)  Kiirendus on kiiruse muutus ajaühikus. (Kiirendusvektor lahutub kiirenevalt liikuva keha trajektoori igas punktis trajektoori puutuja sihiliseks tangentsiaalkiirenduseks ning sellega risti olevaks normaalkiirenduseks ehk tsentrifugaalkiirenduseks) 2. Ühtlaselt muutuv sirgjooneline liikumine. a=consT =>kolmikvalem, Keha liigub sirgjoonelisel trajektooril, kusjuures

Füüsika
thumbnail
50
docx

Füüsika eksamiks kordamine

1. Vektorite liitmine ja lahutamine (graafiline meetod ja vektori moodulite kaudu). Kuidas leida vektorite skalaar- ja vektorkorrutis? Graafiline liitmine: Kolmnurga reegel – eelmise vektori lõpp-punkti pannakse uue vektori algpunkt. Vektorite liitmisel tuleb aevestada suundasid. Saab kuitahes palju vektoreid kokku liita. Rööpküliku reegel – vektorite alguspunkt paigutatakse nii, et nende alguspunktid ühtivad. Saab ainult kahte vektorit kokku liita. ax – x-telje projektsioon ay – y-telje projektsioon az – z-telje projektsioon i, j, k – vektori komponendid ⃗a + b⃗ =i⃗ ( a x + bx ) + ⃗j ( a y +b y ) + ⃗k (a z +b z ) Skalaarkorrutis: ⃗a ∙ ⃗b=|⃗a||b⃗| cosα=a x b x +a j b j +a z b z Kui suudame ära näidata, et vektorid on risti, siis võime öelda, et skalaarkorrutis on 0. ⃗ ⃗ Vektorkorrutis: |a⃗ × b|=¿ ⃗a∨∙∨b∨sinα Vektorid on võrdsed, kui suund ja siht on sama. Samasihilised võivad olla eri

Füüsika
thumbnail
34
docx

Füüsika eksami konspekt

Füsa eksami konspekt 1, Liikumise kirjeldamine Taustsüsteem on mingi kehaga seotud ruumiliste ja ajaliste koordinaatide süsteem. Kohavektor on vektor, mille alguspunkt ühtib koordinaatide alguspunktiga. Trajektoor on keha või ainepunkti teekond liikumisel ruumis või tasandil. Trajektoori saab korrektselt kasutada ainult punktmassi korral. Kiirus on vektoriaalne suurus, mis võrdub nihke ja selle sooritamiseks kulunud ajavahemiku suhtega (kiirusvektor on igas trajektoori punktis suunatud mööda trajektoori puutujat selles punktis). Kiirendus on kiiruse muutus ajaühikus. (Kiirendusvektor lahutub kiirenevalt liikuva keha trajektoori igas punktis trajektoori puutuja sihiliseks tangentsiaalkiirenduseks ning sellega risti olevaks normaalkiirenduseks ehk tsentrifugaalkiirenduseks) 2,* Ühtlaselt muutuv sirgjooneline liikumine. a=consT =>kolmikvalem, Keha liigub sirgjoonelisel trajektooril, kusjuures tema kiirendus on nii suunalt kui suuruselt muutumatu ning samasihilise kiirusega

Füüsika




Meedia

Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun