Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Kompleksarvud gümnaasiumiõpikus (0)

1 Hindamata
Punktid
Vasakule Paremale
Kompleksarvud gümnaasiumiõpikus #1 Kompleksarvud gümnaasiumiõpikus #2 Kompleksarvud gümnaasiumiõpikus #3 Kompleksarvud gümnaasiumiõpikus #4 Kompleksarvud gümnaasiumiõpikus #5 Kompleksarvud gümnaasiumiõpikus #6 Kompleksarvud gümnaasiumiõpikus #7 Kompleksarvud gümnaasiumiõpikus #8
Punktid 50 punkti Autor soovib selle materjali allalaadimise eest saada 50 punkti.
Leheküljed ~ 8 lehte Lehekülgede arv dokumendis
Aeg2014-04-25 Kuupäev, millal dokument üles laeti
Allalaadimisi 16 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor 21aastat Õppematerjali autor
Kompleksarvud

Sarnased õppematerjalid

thumbnail
4
odt

Kompleksarvud

Kompleksarvud Kompleksarvu mõiste: Arve kujul a+ib, kus a ja b on reaalarvud ja i on imaginaarühik, nimetatakse kompleksarvudeks. Kõikide kompleksarvude hulka tähistatakse sümboliga C Kaks kompleksarvu on võrdsed parajasti siis, kui nende imaginaarosad ja reaalosad on vastavalt võrdsed a + bi = c + di <=> a = c ja b = d Kompleksarve a + bi ja a - bi nimetatakse kaaskompleksarvudeks. Näiteks 5+2i ja 5-2i. Kompleksarvu a + bi vastandarvuks nimetatakse kompleksarvu -a ­ bi. Näiteks 7+5i ja -7- 5i. Tehted kompleksarvudega: (a + bi) + (c + di) = (a + c) + (b + d)i (5 -3i)+(2 + 7i) = (5+2) + (-3+7)i = 7 + 4i (a + bi) - (c + di) = (a - c) + (b ­ d)i (5-3i)-(2+7i) = (5-2) +(-3-7)i = 3 - 10i (a + bi)(c + di) = (ac - bd) + (ad + bc)i (5-3i)(2+7i) = (52 - (-3)7) + (57 +(-3)2)i = 31 + 29i Kompleksarvude j

Matemaatika
thumbnail
76
pdf

Kordamine kompleksarv

Teist ja kolmandat j¨arku determinandid. Crameri valemid. Kompleksarvud Tartu 2016 Teist ja kolmandat j¨ arku determinandid. Crameri valemid. Kompl Sarruse (kolmnurga) reegel 3. j¨arku determinantide arvutamiseks Teist ja kolmandat j¨ arku determinandid. Crameri valemid. Kompl ¨ Ulesanne Arvutage determinandid 1 2 4 2 4 0

Matemaatika
thumbnail
104
pdf

Konspekt

I. Determinandid 1 Determinandi m~ oiste 1.1 Idee selgitus Algul defineerime esimest j¨ arku determinandi, siis esimest j¨arku determinandi abil teist j¨ arku determinandi, seej¨arel teist j¨arku determinandi abil kolmandat j¨ arku detereminandi jne, n-j¨arku determinandi defineerime (n - 1)-j¨arku determinandi kaudu. Sel- list defineerimisviisi nimetatakse induktiivseks ja vastavat objekti induktiivseks konstruktsiooniks. Eelnevalt on soovitatav tutvuda maatriksi m~oistega (II.1.1). Kooloniga v~ordus A := B t¨ahendab j¨argnevas, et A on defineeri- tud B kaudu. Seda v~ordust kasutame ka samav¨ a¨arsete t¨ ahistuste sissetoomiseks. 1.2 Esimest j¨ arku determinant Arvu a R determinandi |a| ehk esimest j¨ arku determinandi de- fineerime valemiga |a| := det a := a. 1.3 N¨ aide | - 5| = -5

Lineaaralgebra
thumbnail
2
pdf

Lineaaralgebra

i 1 või i²1 =r(cos+sin) Transporeeritudmaatriks: Maatriksi A transporeeritud maatriks AT saadakse kui Kompleksarv: kirjutatakse maatriksi A read vastavateks veergudeks. Avaldis x iy,kus x ja y on reaalarvud ja i on niinimetatud Kordumine: nA imaginaarühik. pAT 1* 2=r1*r2*(cos(1+2) +i sin(1+2))

Lineaaralgebra
thumbnail
9
doc

Lineaaralgebra

i = -1 või i 2 = -1 ; Kaht kompleksarvu z = a + bi ja z = a - bi , mis erinevad ainult imaginaarosa märgi poolest, nimetatakse kaaskompleksarvudeks. Kokkuleppe põhjal 1) kaht kompleksarvu z1 = a1 + b1i ja z2 = a2 + b2i loetakse võrdseteks ( z1 = z2 ) , kui a1 = a2 ja b1 = b2 , s.t. kui nende reaalosad on võrdsed ja imaginaarosad on võrdsed; 2) kompleksarv võrdub nulliga, s.o. z = a + bi = 0 siis ja ainult siis, kui a = 0 ja b = 0 . Tähistame punkti A ( a ; b ) polaarkoordinaadid tähtedega ja r ( r 0 ) , lugedes pooluseks koordinaatide alguspunkti ja polaarteljeks x-telje positiivse suuna. Siis kehtivad seosed: a = r cos , b = r sin . Järelikult saab kompleksarvu z esitada kujul z = a + bi = r cos + ir sin ehk

Lineaaralgebra
thumbnail
4
pdf

Lineaaralgebra I osaeksam 2013

Kompleksarvuks z nimetatakse avaldist z = a + bi, (1) kus a ja b on reaalarvud ja i on nn. imaginaarühik, mis on määratud võrdustega i = - 1 või i 2 = -1 . Kaht kompleksarvu z = a + bi ja z = a - bi , mis erinevad ainult imaginaarosa märgi poolest, nimetatakse kaaskompleksarvudeks. Kokkuleppe põhjal 1) kaht kompleksarvu z1 = a1 + b1i ja z 2 = a 2 + b2 i loetakse võrdseteks ( z1 = z 2 ) , kui a1 = a 2 ja b1 = b2 , s.t. kui nende reaalosad on võrdsed ja imaginaarosad on võrdsed; 2) kompleksarv võrdub nulliga, s.o. z = a + bi = 0 siis ja ainult siis, kui a = 0 ja b = 0. z = a + bi = r cos + i sin ehk z = r (cos + i sin ) Avaldist võrduse paremal poolel nimetatakse kompleksarvu z = a + bi trigonomeetriliseks kujuks; suurust r nimetatakse kompleksarvu z mooduliks ja suurust selle kompleksarvu argumendiks. 2. Kompleksarvude liitmise, lahutamise, korrutamise ja jagamise valemid. Trigonomeetrilisel kujul antud kompleksarvude korrutamise, jagamise, astendamise ja juurimise valemid.

Lineaaralgebra
thumbnail
23
pdf

YMX0221 kõrgem-matemaatika-1-eksa m teooria

3. Kompleksarvu algebraline kuju. Kaks kompleksarvu algebralisel kujul z = a + ib ja z = a + ib on võrdsed parajasti siis, 1 1 1 2 2 2 kui 1) on võrdsed nende reaalosad, st a = a ja 1 2 2) on võrdsed nende imaginaarosad, st b = b 1 2 4. Kompleksarvu kaaskompleksarv. Kaaskompleksarvu omadused koos tõestusega. Geomeetriliselt esitatud kompleksarvud on võrdsed siis, kui nende kohavektorid on võrdsed ja kaks vektorit on võrdsed parajasti siis, kui on võrdsed nende vastavad koordinaadid. Kompleksarvu z = a + ib kaaskompleksarvuks nimetatakse kompleksarvu so kompleksarvu, mille reaalosa on a ja imaginaarosa −b. Geomeetriliselt vastab sellele vektor (a; −b), so vektor, mis on vektori (a; b) peegeldus reaaltelje (x-telje) suhtes. Kaaskompleksarvu kaaskompleksarv on kompleksarv ise, st z = z,sest 6

Kõrgem matemaatika
thumbnail
4
doc

Lineaar algebra teooria kokkuvõte

Lineaarvõrrandsüsteem-nim. Võrrandisüsteemi kujul {a11x1+..+a1nxn=b1 ; am1x1+.. +amnxn=bm. Arve aij nim lvs kordajateks, arvud b1..bm on vabaliikmed ja x1..xn on tundmatud. Süsteemi võrrandite arv m ja tundmatute arv n on sõltumatud. Sellist võrrandisüsteemi nimetatakse lineaarseks võrrandisüsteemiks, sest otsitavad suurused x1.. xn esinevad ainult lineaarsetes tehetes, st neid on vaid liidetud ja skalaariga korrutatud. Def. Arvude järjendit c1.. cn nim lvs lahendiks, kui tundmatute asendamisel nende arvudega (loomulikus järjekorras, st x1 = c1.. xn = cn) on süsteemi kõik võrrandid rahuldatud. Võrrsüsteemi nim kooskõlaliseks, kui tal leidub vähemalt 1 lahend. Kui lahendid puuduvad, nim sõsteemi vasturääkivaks. Võrrsüs kõigi lahendite hulka nim võrrsüs lahendihulgaks e üldlahendiks. Igal lvs-l kas lahend puudub, on ühene lahend või on lõpmata palju lahendeid. Cramer. Def. Öeldakse, et lvs-i korral on tegemist Crameri peajuhuga, kui 1)tundmatute arv võrd

Lineaaralgebra




Meedia

Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun