Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Matemaatiline analüüs II loengukonspekt (0)

1 Hindamata
Punktid
Vasakule Paremale
Matemaatiline analüüs II loengukonspekt #1 Matemaatiline analüüs II loengukonspekt #2 Matemaatiline analüüs II loengukonspekt #3 Matemaatiline analüüs II loengukonspekt #4 Matemaatiline analüüs II loengukonspekt #5 Matemaatiline analüüs II loengukonspekt #6 Matemaatiline analüüs II loengukonspekt #7 Matemaatiline analüüs II loengukonspekt #8 Matemaatiline analüüs II loengukonspekt #9 Matemaatiline analüüs II loengukonspekt #10 Matemaatiline analüüs II loengukonspekt #11 Matemaatiline analüüs II loengukonspekt #12 Matemaatiline analüüs II loengukonspekt #13 Matemaatiline analüüs II loengukonspekt #14 Matemaatiline analüüs II loengukonspekt #15 Matemaatiline analüüs II loengukonspekt #16 Matemaatiline analüüs II loengukonspekt #17 Matemaatiline analüüs II loengukonspekt #18 Matemaatiline analüüs II loengukonspekt #19 Matemaatiline analüüs II loengukonspekt #20 Matemaatiline analüüs II loengukonspekt #21 Matemaatiline analüüs II loengukonspekt #22 Matemaatiline analüüs II loengukonspekt #23 Matemaatiline analüüs II loengukonspekt #24 Matemaatiline analüüs II loengukonspekt #25 Matemaatiline analüüs II loengukonspekt #26 Matemaatiline analüüs II loengukonspekt #27 Matemaatiline analüüs II loengukonspekt #28 Matemaatiline analüüs II loengukonspekt #29 Matemaatiline analüüs II loengukonspekt #30 Matemaatiline analüüs II loengukonspekt #31 Matemaatiline analüüs II loengukonspekt #32 Matemaatiline analüüs II loengukonspekt #33 Matemaatiline analüüs II loengukonspekt #34 Matemaatiline analüüs II loengukonspekt #35 Matemaatiline analüüs II loengukonspekt #36 Matemaatiline analüüs II loengukonspekt #37 Matemaatiline analüüs II loengukonspekt #38 Matemaatiline analüüs II loengukonspekt #39 Matemaatiline analüüs II loengukonspekt #40 Matemaatiline analüüs II loengukonspekt #41 Matemaatiline analüüs II loengukonspekt #42 Matemaatiline analüüs II loengukonspekt #43 Matemaatiline analüüs II loengukonspekt #44 Matemaatiline analüüs II loengukonspekt #45 Matemaatiline analüüs II loengukonspekt #46 Matemaatiline analüüs II loengukonspekt #47 Matemaatiline analüüs II loengukonspekt #48 Matemaatiline analüüs II loengukonspekt #49 Matemaatiline analüüs II loengukonspekt #50 Matemaatiline analüüs II loengukonspekt #51 Matemaatiline analüüs II loengukonspekt #52 Matemaatiline analüüs II loengukonspekt #53 Matemaatiline analüüs II loengukonspekt #54 Matemaatiline analüüs II loengukonspekt #55
Punktid 50 punkti Autor soovib selle materjali allalaadimise eest saada 50 punkti.
Leheküljed ~ 55 lehte Lehekülgede arv dokumendis
Aeg2013-09-04 Kuupäev, millal dokument üles laeti
Allalaadimisi 69 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor mariliis.naroskina Õppematerjali autor

Sarnased õppematerjalid

thumbnail
16
doc

Kordamisküsimused - vastused

MATEMAATILINE ANALÜÜS II Kood YMM0012 3,5 AP KORDAMISKÜSIMUSED 1. Mitme muutujaga funktsiooni mõiste m-muutuja funktsiooniks nimetatakse kujutist, mis seab suuruse P igale väärtusele tema muutumispiirkonnast D vastavusse suuruse z ühe kindla väärtuse Mitmemuutuja funktsioon graafik Funktsiooni z=f(x1,x2,...,xm), määramispiirkonnaga D, graafikuks nimetatakse järgmist ruumi Rm+1 alamhulka ={(x1,x2,...,xm,f(x1,x2,...,xm))||P(x1,x2,...,xm)D} 2. Nivoojooned ja pinnad Kahemuutuja funktsiooni z=f(x,y) nivoojooneks nimetatakse joont, mille moodustavad piirkonna D punktid (x,y) mille korral f(x,y)=C, kus C on etteantud konstant Skalaarvälja f ehk funktsiooni f nivoopinnaks nimetatakse pinda, mis koosneb piirkonna D punktidest (x,y,z) mille korral f(x,y,z)=C, kus C on etteantud konstant. 3. Mitme muutuja funktsiooni piirväärtus ja pidevus Mitmemuutuja funktsiooni piirväärtus m-muutuja funktsioonil f on piirväärtus b punktis A kui suvalises piirprotsessis PA, mis rahulda

Matemaatiline analüüs 2
thumbnail
4
doc

Spikker

f ( P)dS = f ( A) dS 1. Kahemuutuja funktsiooni integraalsumma mõiste ja f * (P)dS = f * (P)dS + f * (P)dS = f (P)dS m d geomeetriline sisu Vn = f ( P)dS = lim Vn = lim f ( pi , y)dy xi + lim = Kahemõõtmelises hulgas DR2 määratud funktsiooni f(x,y) integraalsummaks antud piirkonnas D nimetatakse summat D D 4. Kahekordse integraali arvutamine ristkoordinaatides

Matemaatiline analüüs
thumbnail
32
pdf

Matemaatiline analüüs II konspekt - MITME MUUTUJA FUNKTSIOONID

Kordamine eksamiks aines matemaatiline analüüs II (2004/2005 õa kevad) §1. MITME MUUTUJA FUNKTSIOONID 1. Ruum R m , hulgad selles ruumis Def. Kõigi m reaalarvust koosnevate järjestatud süsteemide P = ( x1 ,..., x m ) hulka nimetatakse m-mõõtmeliseks ruumiks. Def. Kui m-mõõtmelises ruumis defineeritakse süsteemide P = ( x1 ,..., x m ) ja Q = ( y1 ,..., y m ) m

Matemaatiline analüüs ii
thumbnail
12
docx

Matanalüüs II

1. Kahe muutuja funktsioon ja selle osatuletise rakendused: ekstreemumi leidmine, pinna puutuvtasapind ja normaal, näiteid Kahe muutuja funktsioon esitab pinda xyz-ruumis R3. Piirkonna D (x,y)ЄD igale punktile vastab z=f(x,y). Piirkond D on funktsiooni f määramispiirkond. Osatuletiste rakendused: Ekstreemumi (min, max) leidmine. Punkt, kus osatuletis on 0, nim. kriitiliseks punktiks. P(xo,yo). Puutujatasandi võrrand: fx(x0,y0)x+fy(x0,y0)y-z+d=0. Punkt Q0(x0,y0,z0) kuulub puutujatasandile.Seal pt.s puutujatasandiga risti olev vektor n on pinna normaal pt.s Q0. 2. Määratud integraal ja selle geomeetrilised rakendused: tasapinnalise kujundi pindala, joone kaare pikkus, pöördpinna ruumala ja pindala, näiteid Nimetatakse integraalsummade piirväärtuseks. Newton-Leibinzi valem lubab määratud integraale arvutada määramata integraalide abil. Integreerimise omadusi: 3+2 valemit Rakendused: 1) Tasap. kujundi S=int(ülem-alum) 2) Joone kaare pikkus VALEM 3)Pö�

Matemaatiline analüüs ii
thumbnail
273
pdf

Lembit Pallase materjalid

Trapetsvalem 56. Pindala arvutamine ristkoordinaatides 57. Polaarkoordinaadistik. K~oversektori pindala polaarkoordinaatides 58. K~overjoone kaare pikkus Kirjandus 1. N. S. Piskunov, Diferentsiaal- ja integraalarvutus, I, II, Tallinn 1983. 2. A. L~ohmus, I. Petersen, H. Roos, K~orgema matemaatika u ¨lesannete kogu. Tallinn, 1982. 3. L. Pallas, M¨aa¨ramata integraal. Tallinn, 2005 4. I. Tammeraid, Matemaatiline anal¨ uu¨s I. Tallinn, 2001. 3 5. G. N. Berman, Matemaatilise anal¨ uu¨si kursuse u ¨lesannete kogu. Moskva, 1977 (vene keeles). N¨adalas toimub 2 tundi loenguid ja 2 tundi harjutusi. Loengus esitatakse uus materjal, mida harjutustunnis kinnistatakse u ¨lesannete lahendamisega.

Matemaatiline analüüs
thumbnail
14
pdf

Matemaatiline analüüs II

Mitmemõõtmelise ruumi mõiste Def: On antud n reaalarvu x1...xn ja nende järjestatud jada (x1...xn)(-punkt) ­ seda nim n- mõõtmelise ruumi punktiks. Rn={(x1,...,xn) | xi R, i=1,...,n}, P(x1,...,xn) ­ punkt koordinaatidega xi n=1: R1={P(x1) | x1 R} geom. sirge n=2: R2={P(x1,x2) | x1,x2 R} geom. tasand n=3: R3={P(x1,x2,x3) | x1,x2,x3 R} geom. ruum Punkt A on piirkonna D sisepunkt, sel korral kui tal leidub ümbrus, mis sisaldub piirkonnas D. Punkt A on piirkonna D rajapunkt sel korral kui iga tema ümbrus sisaldab nii piirkonna D kui ka piirkonda mittekuuluvaid punkte. Piirkond D on lahtine, kui ta koosneb sisepunktidest. Piirkond D on kinnine, kui ta koosneb nii sise- kui ka rajapunktidest. Mitme muutuja funktsiooni mõiste Def: nMF f:RnR:P(x1,...,xn) Rn a w=f(P) f(x1,...,xn) R Kujutlus, mis seab n-mõõtmelise ruumi punktidele P vastavusse lõpliku reaalarvu w=f(P), nim n- muutuja funktsiooniks. Geom ­ hüperpind n+1-mõõtmelises ruumis. Füüsikaliselt on nMF skalaarv�

Matemaatiline analüüs 2
thumbnail
10
doc

Matemaatiline analüüs II

1. Kahemuutuja funktsiooni integraalsumma mõiste ja geomeetriline sisu. · Olgu D kinnine tõkestatud piirkond ruumis R2. Olgu z = (x,y) piirkonnas D määratud pidev funktsioon. Jaotame piirkonna D n tükiks S1,S2,...,Sn.Tähistagu Si samaaegselt nii i-ndat tükki kui ka i-nda tüki pindala.Valime igalt tükilt ühe punkti P ja moodustame järgmise summa: Vn= (P1) S1 + (P2) S2+...+ (Pn) Sn Seda summat Vn nim funktsiooni integraalsummaks piirkonnas D · Olgu (x,y) 0. siis saab integraalsummas olevat korrutist (P i) Si tõlgendada kui silindri ruumala, mille põhi on S i ja kõrgus (Pi) Selline silinder tähistatakse Zi-ga. IntegraalsummaVn on järelikult silindrite ühendi Z=Z1 U Z2 U...U Zn ruumala. Silindrite ühend Z on treppkeha, mille ülemine pind on tükiti tasapinnalineomades hüppeid erinevate kõrgustega naaber silindrite liitekohtades. 2. Kahekordse integraali mõiste j

Matemaatiline analüüs
thumbnail
5
doc

Matemaatilise analüüsi 2.kollokviumi

Mitmemuutuja funktsiooni mõiste. Mitmemuutuja funktsiooni piirväärtuse definitsioon. Pideva mitmemuutuja Kui funktsiooni z=f(x,y) on diferentseeruv kohal (x,y), siis funktsioon f on pidev sellel kohal. funktsiooni definitsioon. Kahemuutuja funktsiooni pidevuse geomeetriline sisu. Funktsioon z=f(x,y) on diferentseeruv kohal (x,y) siis, kui funktsioonil z=f(x,y) on pidevad osatuletised fx ja fy kohal (x,y). Kui hulga Rn igale punktile P(x1, . . . , xn) on vastavusse seatud muutuja u R kindel väärtus, siis öeldakse, et hulgal on Kui funktsiooni f(x,y) osatuletised fx(x,y) ja fy(x,y) on diferentseeruvad kohal (x,y), siis fxy = fyx kohal (x,y). defineeritud n-muutuja (skalaarväärtusega) funktsioon. Suurust df:=fx(x,y)dx + fy(x,y)dy, kus dx:= x ja dy:= y, nimetatakse funktsiooni f(x,y)

Matemaatiline analüüs 2




Meedia

Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun