Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse Registreeri konto

Valguse dualistlik käsitlus. Difraktsioon ja interferents. (0)

5 VÄGA HEA
Punktid
Valguse dualistlik käsitlus-Difraktsioon ja interferents #1 Valguse dualistlik käsitlus-Difraktsioon ja interferents #2
Punktid 10 punkti Autor soovib selle materjali allalaadimise eest saada 10 punkti.
Leheküljed ~ 2 lehte Lehekülgede arv dokumendis
Aeg2012-05-05 Kuupäev, millal dokument üles laeti
Allalaadimisi 105 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor Egleska Õppematerjali autor

Märksõnad

Sarnased õppematerjalid

thumbnail
2
docx

Valguslaine, difraktsioon, interferents

1. Kirjelda valguslainet. - Valgus on elektromagnetlaine (elektri + magnetväli) - Eetrit pole vaja - Valguskiirusel - Iseloomustavad suurused: lainepikkus, sagedus, periood ja kiirus - Muutuv elektriväli tekitab muutuva magnetvälja, muutuv magnetväli tekitab omakorda muutuvad elektrivälja 2. Mida nimetatakse valguse difraktsiooniks? Nähtust, kus lained kanduvad tõkete taha. Esineb ka siis, kui lained läbivad tõketes olevaid avasid. 3. Miks ei ole difraktsioon jälgitav suurte mõõtmete korral? Millal on difraktsioon jälgitav? Selleks, et jälgida valguslainete difraktsiooni, ei või avad (või ka tõkked) olla 0,001 mm'st (valguse lainepikkus on väiksem kui 0,001 mm) palju suuremad. Hästi jälgitav difraktsioon ilmneb siis, kui ava laius on võrdne 2-5 lainepikkusega. 4. Kirjelda tüüpilist difraktsioonipilti. Pilt tekib triibulistest mustadest triipudest ja valgetest triipudest. Need on põhjustatud

Füüsika
thumbnail
2
docx

Dispersioon, difraktsioon, interferents

hajumine). Avastas Newton 1666. aastal. Spekter: Spekter näitab, millistest komponentidest liitvalgus koosneb. Prisma ei muuda valget valgust, vaid lahutab selle koostisosadeks (sest prisma murdumisnäitaja oleneb valguse lainepikkusest). Mida väiksem on lainepikkus, seda rohkem kalduvad valguslained murdumisel esialgsest suunast kõrvale. Kõige rohkem kaldub kõrvale violetne, kõige vähem punane valgus. Aine murdumisnäitaja on seda suurem, mida väiksem on valguse lainepikkus. Kõigi ainete murdumisnäitaja väheneb valguse lainepikkuse suurenedes (erinevus 12%). Dispersioon esineb ka valguse läbiminekul paralleelsest klaasplaadist, kuid siis väljuvad erivärvilised valguslained kõik ühes suunas ja meie silm neid ei erista. Valguse interferentsiks nim valguslainete liitumist, mille tulemusena valguse intensiivsus mingis ruumipunktis suureneb või väheneb. Avastas 1801

Füüsika
thumbnail
6
docx

Füüsika KT konspekt: VALGUSLAINED ja ELEKTROMAGNETLAINED

VÄRVUS. VALGE PIND PAISTAB PUNASES VALGUSES SAMUTI PUNANE, SEST VALGE PIND PEEGELDAB TAGASI KÕIKI VALGUSLAINEID. KOLLANE PIND AGA VÕIB PUNASES VALGUSES PAISTA ORNŽINA, SEST ERINEVAD, KUID LÄHEDASED LAINED VÕIVAD LIITUDES ANDA KA UUSI VÄRVITOONE. VÄRVUSFILTER- LÄBIPAISTEV KEHA, MIS ERALDAB VALGEST VALGUSEST VAID KINDLA LAINEPIKKUSEGA OSA. PIND PAISTAB MUST, KUI SEE NEELAB ENAMUSE KÕIKIDEST VALGUSE LAINEPIKKUSTEST JA VALGE, KUI TA PEEGELDAB KÕIKI VALGUSE LAINEPIKKUSI. VALGE VALGUS ON LIITVALGUS SEE TÄHENDAB, ET TA KOOSNEB VÄRVILISTEST VALGUSTEST. VALGUSE DIFRAKTSIOON- NÄHTUS, KUS VALGUSLAINED PAINDUVAD AVADE VÕI TÕKETE TAHA. SELLE JÄLGIMISEKS TULEB VAADATA VALGUST, MIS TULEB LÄBI KOOSHOITUD SÕRMEDE VAHELE JÄÄVA PRAO. PRAKKU ILMUV TUME JOON ONGI PÕHJUSTATUD VALG. DIFRA. DIFRAKTSIOONI TEKITAMISEKS PEAKSID TÕKKED VÕI AVAD OLEMA VALGUSLAINEGA SAMAS SUURUSJÄRGUS. PARIM AVA VÕI TÕKKE LAIUS OLEKS KAHEST KUNI VIIE LAINEPIKKUSENI.

Füüsika
thumbnail
109
doc

Füüsikaline maailmapilt

Füüsikaline maailmapilt (II osa) Sissejuhatus......................................................................................................................2 3. Vastastikmõjud............................................................................................................ 2 3.1.Gravitatsiooniline vastastikmõju........................................................................... 3 3.2.Elektromagnetiline vastastikmõju..........................................................................4 3.3.Tugev ja nõrk vastastikmõju..................................................................................7 4. Jäävusseadused ja printsiibid....................................................................................... 8 4.1. Energia jäävus.......................................................................................................8 4.2. Impulsi jäävus ...............................................................

Füüsikaline maailmapilt
thumbnail
28
doc

põhivara aines füüsikaline maailmapilt

väiksem). Pikkuse ühikuks valitakse mingi kõigile tuntud keha (etalonkeha) pikkus (nt. küünar, jalg, vaks). Liikumise korral lasutatakse mõistet teepikkus (tähis s ­ lad.k. spatium ­ ruum, ulatus) Meeter (1 m) on pikkuse põhiühik, mille korral etalonkehaks on algselt valitud Maa. 1 m on 1/40 000 000 Maa ümbermõõdust (täpsemalt ­ Pariisi meridiaani pikkusest). Kaasaegse definitsiooni kohaselt on üks meeter pikkus, mille valgus läbib vaakumis 1/299 792 458 sekundi jooksul. Aeg t (lad.k. tempus) on füüsikaline suurus, mis iseloomustab sündmuste järgnevust (varem-hiljem). Ajast on mõtet kõnelda vaid siis, kui toimuvad sündmused (esineb liikumine). Aja kaudu me võrdleme ühe keha kiirust teise keha (etalonkeha) kiirusega. Kui näiteks keha A, liikudes kiirusega vA läbib teepik- kuse sA ja keha B, liikudes kiirusega vB läbib samas teepikkuse sB, siis suhe sA / vA = sB / vB = ... jääb

Füüsika
thumbnail
31
rtf

Põhivara aines Füüsikaline maailmapilt

väiksem). Pikkuse ühikuks valitakse mingi kõigile tuntud keha (etalonkeha) pikkus (nt. küünar, jalg, vaks). Liikumise korral lasutatakse mõistet teepikkus (tähis s ­ lad.k. spatium ­ ruum, ulatus) Meeter (1 m) on pikkuse põhiühik, mille korral etalonkehaks on algselt valitud Maa. 1 m on 1/40 000 000 Maa ümbermõõdust (täpsemalt ­ Pariisi meridiaani pikkusest). Kaasaegse definitsiooni kohaselt on üks meeter pikkus, mille valgus läbib vaakumis 1/299 792 458 sekundi jooksul. Aeg on vaatleja kujutlus, mis tekib liikumiste võrdlemisel. Aeg t kui füüsikaline suurus (lad.k. tempus) iseloomustab sündmuste järgnevust (varem-hiljem). Ajast on mõtet kõnelda vaid siis, kui toimuvad sündmused (esineb liikumine). Aja kaudu me võrdleme ühe keha kiirust teise keha (etalonkeha) kii- rusega. Kui näiteks keha A, liikudes kiirusega vA läbib teepikkuse sA ja keha B, liikudes kiirusega vB

Füüsika
thumbnail
5
docx

Elektromagnetlained

lainepikkusega. Tekib defraktsioonpilt. Interferents ­ Kahe laine liitumist, mille tulemusena lained tugevduvad või nõrgendavad teineteist nim. interferentsiks. Samas faasis olevad lained tugevdavad liitumisel teineteist. Lained peavad olema kolurantsed. difraktsiooni ja interferentsi rakendused:Inferents kiledes Selgendavad katted . Kasutatakse neid, et vähendada valguse tagasi peegeldumist pindadelt. Fotoaparaadid, teleskoobid, optilised süsteemid. Newtoni rõngad. Valgus peegeldub klaasplaadi ja läätse vahelt. Difraktsioonvõre. Klaasplaadil olevate paralleelsete pilude süsteem. Holograafia, Esemetest ruumilise kujutise fotografeerimine. Valguse polarisatsioonElektrivälja tugevuse vektor võngub ühes kindlas tasandis. See tekitab teatud kristallid, mis lasevad läbi kindlas tasandis. Need on POLAROIDID. Rakendused:Polaroid päikeseprillid.3D kino Max Plancki hüpotees. Footoni energia arvutamine. 1902. Osakestena ehk footonitena käitub

Füüsika
thumbnail
1
doc

Elektromagnetlained KT nr. 3

Kordamisküsimused kt. nr. 3. G2 klass Elektromagnetlained 1. Milline on seos muutuvate elektri ja magnetväljade vahel? 2. Mida nim. elektromagnetlaineks? Iseloomusta elektromagnetlaine ehitust. 3. Millisel viisil on võimalik tekitada elektromagnetlainet? 4. Mis on elektromagntelaine lainepikkus, sagedus ja elektromagnetlaine levimiskiirus vaakumis. 5. Elektromagnetlainete skaala. Omadused. 6. Mida nim. valguseks? 7. Valguslaine kirjeldamine võrrandiga. Valguse intensiivsus. 8. Valgus ja värvus. Valge värvuse saamine. 9. Infra ja ultravalgus: saamine ja omadused. 10. Valguse dualism. 11. Max Plancki hüpotees. Footoni energia arvutamine. 12. Mis on valguse difraktsioon ja interferents? Difraktsiooni ja interferentsi toimumise tingimused. 13. Nimeta difraktsiooni ja interferentsi rakendusi. 14. Valguse polarisatsioon. Rakendused. 1. Muutuv el.väli tekitab muutuva magnetvälja ja muutuv mag.väli tekitab muutuva elektrivälja. 2

Füüsika



Lisainfo

Valguse dualistlik käsitlus. Difraktsioon ja interferents. Mõisted.

Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun