Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Valgus ja energia (0)

1 Hindamata
Punktid

Lõik failist

Valgus ja energia #1 Valgus ja energia #2
Punktid 50 punkti Autor soovib selle materjali allalaadimise eest saada 50 punkti.
Leheküljed ~ 2 lehte Lehekülgede arv dokumendis
Aeg2016-03-29 Kuupäev, millal dokument üles laeti
Allalaadimisi 3 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor wezz Õppematerjali autor
Sisaldab teemasid: probleem valguskiirusega, relatiivsusteooria, newtoni mehaanika, valguse difraktsioon, valguse interferents, lainete interferents, selgindav kile, valguse kiirus,

Sarnased õppematerjalid

thumbnail
109
doc

Füüsikaline maailmapilt

....... 2 3.1.Gravitatsiooniline vastastikmõju........................................................................... 3 3.2.Elektromagnetiline vastastikmõju..........................................................................4 3.3.Tugev ja nõrk vastastikmõju..................................................................................7 4. Jäävusseadused ja printsiibid....................................................................................... 8 4.1. Energia jäävus.......................................................................................................8 4.2. Impulsi jäävus ...................................................................................................... 9 4.3. Termodünaamika I printsiip..................................................................................9 4.4. Termodünaamika II printsiip................................................................................ 9 4.5

Füüsikaline maailmapilt
thumbnail
69
docx

FÜÜSIKA 1 eksami vastused

Väheneb jõud, mida peab koormusele selle tõstmiseks rakendama. Mida suurem on kangile rakendatud jõu õlg, seda väiksem peab olema jõud ise. [3] Näited: 15 [2] 21. Võimsus Võimsus (P) kirjeldab töö tegemise kiirust (ajaühikus tehtud tööd A) P ­ võimsus [W], A ­ töö [J], T ­ aeg [s] F ­ jõud, s ­ teepikkus, v ­ kiirus 22. Energia definitsioon, kineetiline energia ja potentsiaalne energia (definitsioon, valem, valemi analüüs) mis erinevus kin. ja pot energial on? Kuidas toimub muutumine ühest liigist teise (näide)? Energia näitab keha võimet teha tööd. Energia on keha ,,töö varu". Nii energiat kui tööd mõõdetakse dzaulides: A ­ töö [J], E ­ energia [J] Kineetiline energia on keha liikumisenergia. mv 2 A E k 2 A ­ töö, Ek ­ kineetiline energia, m ­ keha mass, v - kiirus

Füüsika
thumbnail
36
doc

Elektromagnetism

suletud vooluringis voolutugevus on võrdeline elektromotoorse jõuga ja pöördvõrdeline vooluringi kogutakistusega. I= /(R+r) Sellest valemist saab määrata vooluallika EMJ : = I ( R + r ) ehk = I R +I r EMJ valemist = U + U saame U = I R ja U = I r 3.2.5. Elektrivoolu töö ja võimsus. Joule'i-Lenzi seadus. Igas elektrilises vooluringis toimub energia muundumine. Vooluallikas muundab mehaanilist, soojuse, keemilist jt. energiat elektrienergiaks. Vooluringi välisosas see elektrienergia muundub mõneks teiseks energia liigiks, näiteks soojuseks. Laetud osakeste korrapärasel liikumisel juhis teeb elektriväli tööd. Seda tööd nimetatakse voolutööks. A B o o A q B

Füüsika
thumbnail
31
rtf

Põhivara aines Füüsikaline maailmapilt

mõõtühikud on põhiühikud. Kõik teised suurused ja ühikud on määratud vastavalt põhisuuruste ning põhiühikute kaudu. Põhisuurused on: pikkus, aeg, mass, aine hulk, temperatuur, voolutugevus ja val- gustugevus. Nende ühikud on vastavalt: meeter, sekund, kilogramm, mool, kelvin, amper ja kandela. Skalaarne suurus on esitatav vaid ühe mõõtarvuga, millele lisandub mõõtühik. Skalaarsed suurused on ilma suunata (näit. aeg, pikkus, rõhk, ruumala, energia, temperatuur). Vektoriaalne suurus on kolmemõõtmelises ruumis esitatav kolme arvuga (+ mõõtühik). Need on vektori koordinaadid. Vektoriaalsetel suurustel on suund olemas (näit. kiirus, kiirendus, jõud). Füüsika keeles tuleb (erinevalt tavakeelest) kasutada korrektselt füüsikaliste suuruste ning mõõtühikute nimetusi ja tähiseid. Suuruste tähised esitatakse kaldkirjas (l, t, m,...) , ühikute omad püstkirjas (cm, s, kg...)

Füüsika
thumbnail
29
doc

Põhivara füüsikas

mõõtühikud on põhiühikud. Kõik teised suurused ja ühikud on määratud vastavalt põhisuuruste ning põhiühikute kaudu. Põhisuurused on: pikkus, aeg, mass, aine hulk, temperatuur, voolutugevus ja val- gustugevus. Nende ühikud on vastavalt: meeter, sekund, kilogramm, mool, kelvin, amper ja kandela. Skalaarne suurus on esitatav vaid ühe mõõtarvuga, millele lisandub mõõtühik. Skalaarsed suurused on ilma suunata (näit. aeg, pikkus, rõhk, ruumala, energia, temperatuur). Vektoriaalne suurus on kolmemõõtmelises ruumis esitatav kolme arvuga (+ mõõtühik). Need on vektori koordinaadid. Vektoriaalsetel suurustel on suund olemas (näit. kiirus, kiirendus, jõud). Füüsika keeles tuleb (erinevalt tavakeelest) kasutada korrektselt füüsikaliste suuruste ning mõõtühikute nimetusi ja tähiseid. Suuruste tähised esitatakse kaldkirjas (l, t, m,...) , ühikute omad püstkirjas (cm, s, kg...)

Füüsika
thumbnail
28
doc

põhivara aines füüsikaline maailmapilt

mõõtühikud on põhiühikud. Kõik teised suurused ja ühikud on määratud vastavalt põhisuuruste ning põhiühikute kaudu. Põhisuurused on: pikkus, aeg, mass, aine hulk, temperatuur, voolutugevus ja val- gustugevus. Nende ühikud on vastavalt: meeter, sekund, kilogramm, mool, kelvin, amper ja kandela. Skalaarne suurus on esitatav vaid ühe mõõtarvuga, millele lisandub mõõtühik. Skalaarsed suurused on ilma suunata (näit. aeg, pikkus, rõhk, ruumala, energia, temperatuur). Vektoriaalne suurus on kolmemõõtmelises ruumis esitatav kolme arvuga (+ mõõtühik). Need on vektori koordinaadid. Vektoriaalsetel suurustel on suund olemas (näit. kiirus, kiirendus, jõud). Füüsika keeles tuleb (erinevalt tavakeelest) kasutada korrektselt füüsikaliste suuruste ning mõõtühikute nimetusi ja tähiseid. Suuruste tähised esitatakse kaldkirjas (l, t, m,...) , ühikute omad püstkirjas (cm, s, kg...)

Füüsika
thumbnail
105
doc

Füüsika konspekt

Nimelt tuleneb teisest postulaadist, et kui kaks ruumiliselt eraldatud sündmust toimuvad ühes taustsüsteemis ühel ja samal hetkel, ei tarvitse nad mõne teise kehaga seotud taustsüsteemis olla samaaegsed. Niisamuti ei kulge aeg kõigis taustsüsteemides ühesuguselt. Sellist mõtteviisi on muidugi raske omaks võtta. Kõik see tuleneb Einsteini poolt teooria aluseks võetud teisest postulaadist. Piltlikult tähendab see, et kiirus, millega valgus möödakihutava rongi prozektorist väljub, on 1 ühesugune nii rongi kui ülesõidukoha juures seisva auto suhtes. Sellest postulaadist järeldub nii mõndagi ebatavalist. Kujutame ette, et meist möödub valguse kiirusega võrreldava kiirusega kihutav rakett ja selle keskel istuv reisija süütab tiku (joon. 2). Raketi sabas ja ninas istujad näevad seda tähtsat

Füüsika
thumbnail
477
pdf

Maailmataju

Näiteks psühholoogiateaduses on alles viimase paari aastakümne jooksul tekkinud teaduslik küsimus, et mis on teadvus ja kuidas see inimese närvisüsteemis tekib. Täpselt sama on ka Universumi olemuse mõistatusega. Teaduslik küsimus seisneb selles, et mis on Universumi eksisteerimise füüsikaline olemus? Näiteks kas Universum on tõepoolest lihtsalt üks suur mehaaniline masinavärk, mis töötab kindlate seaduspärasuste kohaselt? Kui kõige eksisteerimise aluseks on energia, mida teab ja tunneb tänapäeval klassikaline mehaanika, siis tekib kohe järgmine küsimus, et mis ,,asi" siis see energia ise on? Taolistele küsimustele püütaksegi siin vastust anda. Selle valdkonna põhiliseks teesiks on see, et Universumis ei ole tegelikult aega. Universum ise on ajatu, mis tuleb välja ajas rändamise teooriast. Antud tees on lähtepunktiks paljudele teistele uutele füüsikaseadustele, mis viivad lõppkokkuvõttes arusaamisele, et Universumit ei olegi tegelikult olemas

Karjäärinõustamine




Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun