Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Võrrandite koostamine ja lahendamine (2)

5 VÄGA HEA
Punktid

Esitatud küsimused

  • Kui suur on otsitav arv?
  • Kui suur on selle ruud külg?
Võrrandite koostamine ja lahendamine #1 Võrrandite koostamine ja lahendamine #2 Võrrandite koostamine ja lahendamine #3 Võrrandite koostamine ja lahendamine #4
Punktid 50 punkti Autor soovib selle materjali allalaadimise eest saada 50 punkti.
Leheküljed ~ 4 lehte Lehekülgede arv dokumendis
Aeg2010-10-27 Kuupäev, millal dokument üles laeti
Allalaadimisi 171 laadimist Kokku alla laetud
Kommentaarid 2 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor kriska1256 Õppematerjali autor
Matemaatika ülesannete lahendamine seletuste ja lahenduskäikudega

Kasutatud allikad

Sarnased õppematerjalid

thumbnail
28
doc

Ruutvõrrandi abil lahenduvaid ülesandeid

Ülesannete lahendused pärinevad õpikust "Matemaatika IX klassile"(koost. Tõnu Tõnso ,Tln., 1998), lk-74-78 (ül.269-391) ja kogumikust "Matemaatika kirjaliku eksami ülesanded IX klassile"* (koost. Enn Nurk ja Valvo Paat, Tln., 1996). * ülesanded tähistatud E-tähega. Paljude tekstülesannete lahendamisel jõuame ruutvõrrandini, millel on tavaliselt 2 lahendit. Olenevalt ülesande sisust võib aga ülesande vastuseks sobida ainult üks lahend. Tekstülesannete puhul tuleb võrrandi lahendeid kontrollida ülesande teksti, mitte koostatud võrrandi järgi. Tekstülesande lahendamine võrrandi abil koosneb kolmest etapist: 1. võrrandi koostamine teksti järgi; 2. koostatud võrrandi lahendamine; 3. võrrandi lahendite kontroll teksti järgi, lõplik lahendite leidmine ja vastuse kirjutamine. Mõningaid näpunäiteid võrrandi koostamiseks. Põhinõue - loe teksti ülima tähelepanuga, sest tekstis on kogu ülesande sisu

Algebra I
thumbnail
28
doc

Ruutvõrrandi abil lahenduvaid ülesandeid

Ülesannete lahendused pärinevad õpikust "Matemaatika IX klassile"(koost. Tõnu Tõnso ,Tln., 1998), lk-74-78 (ül.269-391) ja kogumikust "Matemaatika kirjaliku eksami ülesanded IX klassile"* (koost. Enn Nurk ja Valvo Paat, Tln., 1996). * ülesanded tähistatud E-tähega. Paljude tekstülesannete lahendamisel jõuame ruutvõrrandini, millel on tavaliselt 2 lahendit. Olenevalt ülesande sisust võib aga ülesande vastuseks sobida ainult üks lahend. Tekstülesannete puhul tuleb võrrandi lahendeid kontrollida ülesande teksti, mitte koostatud võrrandi järgi. Tekstülesande lahendamine võrrandi abil koosneb kolmest etapist: 1. võrrandi koostamine teksti järgi; 2. koostatud võrrandi lahendamine; 3. võrrandi lahendite kontroll teksti järgi, lõplik lahendite leidmine ja vastuse kirjutamine. Mõningaid näpunäiteid võrrandi koostamiseks. Põhinõue - loe teksti ülima tähelepanuga, sest tekstis on kogu ülesande sisu

Matemaatika
thumbnail
29
doc

Ruutvõrrand

Ülesannete lahendused pärinevad õpikust "Matemaatika IX klassile"(koost. Tõnu Tõnso ,Tln., 1998), lk-74-78 (ül.269-391) ja kogumikust "Matemaatika kirjaliku eksami ülesanded IX klassile"* (koost. Enn Nurk ja Valvo Paat, Tln., 1996). * ülesanded tähistatud E-tähega. Paljude tekstülesannete lahendamisel jõuame ruutvõrrandini, millel on tavaliselt 2 lahendit. Olenevalt ülesande sisust võib aga ülesande vastuseks sobida ainult üks lahend. Tekstülesannete puhul tuleb võrrandi lahendeid kontrollida ülesande teksti, mitte koostatud võrrandi järgi. Tekstülesande lahendamine võrrandi abil koosneb kolmest etapist: 1. võrrandi koostamine teksti järgi; 2. koostatud võrrandi lahendamine; 3. võrrandi lahendite kontroll teksti järgi, lõplik lahendite leidmine ja vastuse kirjutamine. Mõningaid näpunäiteid võrrandi koostamiseks. Põhinõue - loe teksti ülima tähelepanuga, sest tekstis on kogu ülesande sisu

Matemaatika
thumbnail
63
doc

Põhikooli matemaatika kordamine

3a 2 3a 6 a 2 3a 9a 6 a 2 3a 1 2 2 ; 3a 3a a 1 a 1 1 a 2) a 1 . a a a Kui a = 0,5, siis 1 a 1 0,5 0,5 1. a 0,5 0,5 Täisnurkse kolmnurga lahendamine Pythagorase teoreem 1. Leia täisnurkse kolmnurga 1) hüpotenuus c, kui kaatetid a = 5 cm ja b = 12 cm; Lahendus: Hüpotenuusi c arvutamiseks kasutame valemit c2 a 2 b2 ; c a 2 b2 . c 5 2 12 2 169 13. Vastus: hüpotenuus c = 13 cm. 2) kaatet a, kui hüpotenuus c = 10 cm ja teine kaatet b = 6 cm; Lahendus: Kaateti a arvutamiseks kasutame valemit c2 a 2 b2 ; a c2 b2 .

Matemaatika
thumbnail
3
doc

Ruutvõrrand

· Kui D > 0, siis ruutvõrrandil on 2 erinevat lahendit. · Kui D = 0, siis on ruutvõrrandil 2 võrdset lahendit. · Kui D < 0, siis ruutvõrrandil reaalarvulised lahendid puuduvad. Kui ruutliikme kordaja on negatiivne arv, siis enne võrrandi lahendamist korrutame mõlemaid pooli arvuga (­1) ja saame ruutliikme kordajaks positiivse arvu. Ruutvõrrandi lahendite õigsust tuleb kontrollida, asendades lahendid algvõrrandis. Tekstülesande korral peab lahend sobima ka ülesande sisuga. Näiteks ei saa pikkus olla negatiivne, inimeste arv saab olla ainult naturaalarv jne. Näide 14. Lahendame ruutvõrrandi 3x2 + 5x ­2 = 0. Lahendus. Siin a = 3; b = 5 ja c = ­2. - 5 ± 5 2 - 4 3 ( -2) - 5 ± 49 - 5 ± 7 x= = = 23 6 6 -5 -7 -5 +7 2 1

Matemaatika
thumbnail
2
doc

Hulkliikme korrutamine üksliikmega

Hulkliikme korrutamine üksliikmega 1. Korruta. a) 3m(4 ­ 2m + m2) Lahendus: 3m(4 ­ 2m + m2) = 12m ­ 6m2 + 3m3 = 3m3 ­ 6m2 + 12m b) ­ 6a2b(1,5ab2 ­ 0,5b) Lahendus: ­ 6a2b(1,5ab2 ­ 0,5b) = ­ 9a3b3 + 3a2b2 c) (­ m2 + 4n3) * 0,5nm2 Lahendus: (­ m2 + 4n3) * 0,5nm2 = ­ 0,5m4n + 2m2n4 2. Lihtsusta avaldis. a) 5(2a + 3b) ­ 2(5a ­ 2b) Lahendus: 5(2a + 3b) ­ 2(5a ­ 2b) = 10a + 15b ­ 10a + 4b =19b b) ab2(a ­ 2b) ­ a2b(2a + b) Lahendus: ab2(a ­ 2b) ­ a2b(2a + b) = a2b2 ­ 2ab3 ­ 2a3b ­ a2b2 = ­ 2ab3 ­ 2a3b 3. Kahe arvu summa on 70, kusjuures ühe arvu kahekordne on võrdne teise arvu kolmekordsega. Leia need arvud. Lahendus: Olgu üks arv x. Kui kahe arvu summa on 70, siis teine arv on 70 ­ x. Ühe arvu kahekordne st 2x on võrdne teise arvu kolmekordsega st 3(70 ­ x). Saame võrrandi: 2x = 3(70 ­ x). 2x = 210 ­ 3x; 2x + 3x = 210; 5x = 210; x = 42. Kontroll:

Matemaatika
thumbnail
15
doc

Mõisted matemaatikas

Võrde põhiomadus: võrde siseliikmete korrutis on võrdne võrde välisliikmete korrutisega. Võrde ühe poole lugeja ja teise poole nimetaja korrutised on võrdsed. Võrdeline seos on lineaarse seose erijuht, mistõttu ka iga võrdelise seose graafik on sirge. Võrdelise seose korral läbib see koordinaadistiku alguspunkti. Peale selle ei saa võrdelise seose graafik olla paralleelne kummagi koordinaatteljega. Võrrand ehk võrdlus, mis sisaldab tundmatut suurust ehk tundmatut. Võrrandi lahend on kõik tundmatu väärtused, mille korral võrrand osutub tõeseks võrduseks. Võrrandi lahendamine on võrrandi lahendihulga leidmine. Võrrandi põhiomadused: 1) võrrandi pooli võib vahetada 2) võrrandi mõlemale poolele võib liita või mõlemast poolest lahutada sama liikme või avaldise 3)võrrandi mõlemat poolt võib korrutada või jagada ühe ja sama nullist erineva arvuga. Võrre on tõene võrdus kahe suhte vahel. Ühiskordseteks nimetakse arve,

Matemaatika
thumbnail
18
pdf

8. klassi raudvara: PTK 6

NB ruutvõrrand võib olla normaalkujuline, täielik, mittetäielik, taandamata, taandatud lahendeid.2 võrrand x -x-12=0 asendada antud arv võrrandi vasakusse poolde ja kontrollida, kas V=0, sest P=0 2 V=0 -0-12=-12 arv 0 ei ole lahend 2 V=0,2 -0,2-12=-12,16 arv 0,2 ei ole lahend 2 V=(-3) -(-3)-12=0 arv -3 on lahend 2 V=0,5 -0,5-12=-12,25 arv 0,5 ei ole

Matemaatika




Meedia

Kommentaarid (2)

merik199 profiilipilt
merik199: päris hea
14:18 25-10-2011
egipus profiilipilt
egipus: Suht OK
17:55 01-11-2011



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun