Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

Võrrandisüsteemide koostamine tekstülesannete põhjal III osa - sarnased materjalid

lahend, rong, vastuvoolu, rongil, voolukiirus, murdvõrrandi, seisvas, absoluutkiiruse, teepikkus, vahemaa, kummagi, pöördväärtus, lepikult, liikumisülesanded, kummalgi, tundides, öeldud, vabaneme, esmalt, lahendame, lahendiks, kiirusele, teepikkused, määramiseks, saime, esialgse, algsete, ehkki, esimesest, eeldust, vastupidine, lennata, 3600
thumbnail
12
ppt

Võrrandisüsteemide koostamine tekstülesannete põhjal II osa

x- y = 2 y = x-2 y =7-2=5 Ka tundmatu y väärtus rahuldab lahenduse algul kirjapandud tingimusi. Ülesanne 1 (5) Lahendus jätkub ... Otsitav arv on seega 75. Tema numbrite summa on tõesti 12 ja numbrite vahetamisel saadud arv (57) on 18 võrra väiksem kui esialgne arv. Vastus: Otsitav arv on 75. Ülesanne 2 (kiiruste liitmine) Ülesanne 2 Aurik sõidab mööda jõge pärivoolu ühest sadamast teise 4 tunniga ja vastuvoolu 5 tunniga. Leida sadamatevaheline kaugus, kui jõe voolukiirus on 2 km/h. Lahendus Liikumisega seotud ülesannetes tuleb teada kiiruse v, läbitud teepikkuse s ja liikumiseks kulunud aja t vahelist seost: s v= , t millest järelduvad seosed s = vt s ja t = . v

Matemaatika
97 allalaadimist
thumbnail
26
pdf

KINEMAATIKA

Antud: valemist v = s/t. Teades kiirust ja läbitud teepikkust saab selleks v = 450 km/h kulunud aja t arvutada valemist s = 2250 km t=? s 2250 h = 5 h t= =( ) v 450 Vastus: lennukil kulub 2250 km läbimiseks 5 tundi. NB! Antud ülesandes jätsime me ühikud teisendamata, sest kiirus oli kilomeetrites tunnis ja läbitud teepikkus kilomeetrites. Jagamisel taanduvad kilomeetrid välja, tulemuse saame tundides. 1.2 Üldine liikumine, trajektoor, kiirusvektor Üldine liikumine on enamasti kõverjooneline, kus muutub nii keha kiirus kui ka keha liikumise suund: Keha liikumist ruumis kujutatakse kõverana, mis koosneb punktidest, mida keha üksteisele järgnevatel ajahetkedel läbib. Sellist kõverat nimetame keha trajektooriks (vt kõrvalolevat joonist). Trajektoor kujutatakse alati kindlas

Füüsika
127 allalaadimist
thumbnail
11
doc

Ühtlane liikumine

Mehaanika. Sirgjoonelise liikumise kinemaatika. Ühtlane liikumine 1 Ühtlane liikumine Liikumise põhivalem on s = vt s ­ teepikkus (km); v ­ kiirus (km/h); t ­ aeg (h). Vaatame ülesandeid. 1. Bambus kasvab kiirusega ligikaudu 0,001 cm/s. Kui palju kasvab bambus ööpäevaga.? Antud: cm v = 0,001 s Lahendus: t = 24h = 24 60 min = 24 60 60s = 86400s s = 0,001 86400 = 86,4cm Vastus: Bambus kasvab ööpäevas 86,4 cm. 2. Signaali liikumiskiiruseks mööda närvikiudu võib lugeda 50 m/s. Kujutleme, et inimese käsi on nii pikk, et ulatub Päikeseni

Füüsika
87 allalaadimist
thumbnail
2
doc

Keskonnafüüsika

KESKKONNAFÜÜSIKA käsitletud ülesannete võimalikud lahendused (NB! Lahendada saab ülesandeid enamasti mitut moodi) Jalgrattur sõitis Tartust Viljandi kiirusega 40 km/h ning tagasi kiirusega 20 km/h. Leida keskmine kiirus. Kiirus on asukoha muutus ajas. Kõige lihtsam keskmise kiirus arvutamise moodus on kogu läbitud teepikkus jagada selleks kulunud ajaga. Tähistame teepikkuse Tartust Viljandi s-ga, ajad ja kiirused vastavalt t1 ning v1 ja t2 ja v2. (V1 = 40 ja v2 =20 km/h ) Meil siis vk=2s/(t1+t2), algtingimustest 2t 1=t2, seega vk=2s/3 t1. Kuna s/t1 =v1, siis vk=2/3 v1 ehk vastavalt 26,7 km/h Vesikeskkütte radiaatoriga ühendatud toru ristlõikepindala on 600 ruutmillimeetrit ja selles liigub kiirusega 2 cm/s vesi, mille temperatuur on 80 °C. Radiaatorist väljumisel on vee temperatuur 25 °C. Kui

Füüsika
126 allalaadimist
thumbnail
4
doc

KESKKONNAFÜÜSIKA

KESKKONNAFÜÜSIKA käsitletud ülesannete võimalikud lahendused (NB! Lahendada saab ülesandeid enamasti mitut moodi) Jalgrattur sõitis Tartust Viljandi kiirusega 40 km/h ning tagasi kiirusega 20 km/h. Leida keskmine kiirus. Kiirus on asukoha muutus ajas. Kõige lihtsam keskmise kiirus arvutamise moodus on kogu läbitud teepikkus jagada selleks kulunud ajaga. Tähistame teepikkuse Tartust Viljandi s-ga, ajad ja kiirused vastavalt t1 ning v1 ja t2 ja v2. (V1 = 40 ja v2 =20 km/h ) Meil siis vk=2s/(t1+t2), algtingimustest 2t 1=t2, seega vk=2s/3 t1. Kuna s/t1 =v1, siis vk=2/3 v1 ehk vastavalt 26,7 km/h Vesikeskkütte radiaatoriga ühendatud toru ristlõikepindala on 600 ruutmillimeetrit ja selles liigub kiirusega 2 cm/s vesi, mille temperatuur on 80 C. Radiaatorist väljumisel on vee temperatuur 25 C. Kui

Keskkonafüüsika
10 allalaadimist
thumbnail
15
pdf

Hüdraulika ja Pneumaatika

Vastus: 400kg massiga koormuse vertikaalsel tõstmisel töövedeliku rõhuga 200 bar on vajalik 16,22mm läbimõõduga hüdrosilinder. Kasutades 16 mm standardmõõduga silindrit on töövedeliku rõhk koormuse tõstmisel 205,4 bar. 5 Ülesanne 4. Variant 4 Torustikus voolab vedelik koguses q = 12 l/min. Leida milline peab olema torustiku minimaalne siseläbimõõt d [mm], et tagada lubatud vedeliku voolukiirus v = 4 m/s. Valida sobiva läbimõõduga terastoru standardsete toru läbimõõtude reast. Millist maksimaalset rõhku p [bar] talub valitud toru, kui toru materjali lubatud tõmbepinge Rm= 400 N/mm2 ? Valemid. Mahulise vooluhulga valem on: q v = vA v = töövedeliku voolukiirus m s A = voolu ristlõikepindala m 2 Siit saame tuletada toru siseava ristlõikepindala leidmiseks valemi: A= qv m[ s ]×10 3 -6

Hüdraulika
233 allalaadimist
thumbnail
57
rtf

TEHNILINE TERMODÜNAAMIKA

TEHNILINE TERMODÜNAAMIKA SISSEJUHATUS Termodünaamika on teadus energiate vastastikustest seostest ja muundumistest, kus üheks komponendiks on soojus. Tehniline termodünaamika on eelmainitu alaliigiks, mis uurib soojuse ja mehaanilise töö vastastikuseid seoseid. Tehniline termodünaamika annab alused soojustehniliste seadmete ja aparaatide (näiteks katelseadmete, gaasiturbiinide, sisepõlemismootorite, kompressorite, reaktiivmootorite, soojusvahetusseadmete, kuivatite jne.) arvutamiseks ja projekteerimiseks. Tehniline termodünaamika nagu termodünaamika üldse tugineb kahele põhiseadusele. Termodünaamika esimene seadus on energia jäävuse seadus, rakendatuna soojuslikele protsessidele, teine seadus aga määrab kindlaks vahekorra olemasoleva soojuse ja temast saadava mehaanilise töö vahel, st määrab kindlaks soojuse mehaaniliseks tööks muundamise tingimused. Termodünaamika kui teadus hakkas hoogsalt arenem

Termodünaamika
17 allalaadimist
thumbnail
41
doc

10. klassi arvestused

......................................................6 4. Taustsüsteem..............................................................................................................................7 5. Nihe............................................................................................................................................7 6. Trajektoor..................................................................................................................................7 7. Teepikkus...................................................................................................................................7 8. Kiirus.........................................................................................................................................7 9. Keskmine kiirus.........................................................................................................................8 10. Kiirendus...............................................................

Füüsika
1117 allalaadimist
thumbnail
4
pdf

Füüsika ülesanded lahendustega

LIIKUMISHULK 1. Kui suur on 10 tonni kaaluva veoki liikumishulk, kui ta kiirus on 12.0 m/s? Kui kiiresti peaks sõitma 2-tonnine sportauto, et ta liikumishulk oleks sama? p 10t p m v v1 12.0m/s p m v 1000kg 12.0m/s 120'000kg m/s p2 2t . p 120'000kg m/s v2 ? v 60 m m 2'000kg s 2. Pesapall massiga 0.145 kg veereb y-telje positiivses suunas kiirusega 1.30 m/s ja tennispall massiga 0.0570 kg y-telje negatiivses suunas kiirusega 7.80 m/s. Milline on süsteemi summaarse liikumishulga suurus ja suund? v2 7,80m/s p1 m1 v1 0,1885kg m/s m2 0.0570kg

Füüsika
519 allalaadimist
thumbnail
6
pdf

Füüsikaline maailmapilt lahendusi

a) Kui suur on selle auto keskmine kiirendus? b) Kui pika tee võib auto läbida esimese 15 s vältel? t = 9,7 s 100 1000 lõppkiirus v1 = 100 km h = m s 27,8 m s 3600 algkiirus v0 = 0 t = 15s kiirendus a=? teepikkus s=? Lahendus. v1 - v0 27,8 - 0 a) Kiirendus a = = = 2,87 2,9 m s 2 t 9,7 at 2 b) Teepikkus ühtlaselt muutuva liikumise korral s = v0t + . Kui algkiirus v0 = 0 , siis 2 at 2 2,87 152 s= = 3,2 102 m . 2 2 Vastus: a) Kiirendus on 2,9 m/s2. b) Esimese 15 sekundi vältel läbib auto 3, 2 102 m . Märkus: kuna algandmed on antud kahe tüvenumbri täpsusega, siis ka lõppvastused ei saa olla täpsemad kui 2 tüvenumbrit. Vahearvutused peavad aga sel juhul olema 3 tüvenumbri täpsusega. 4

Füüsika
17 allalaadimist
thumbnail
18
doc

Füüsika riigieksami konspekt

FÜÜSIKA RIIGIEKSAMI KONSPEKT TTG 2005 SISSEJUHATUS. MÕÕTÜHIKUD SI ­ System International, 7 põhisuurust ja põhiühikut: 1. pikkus 1 m (mehaanika) 2. mass 1 kg (mehaanika) 3. aeg 1s (mehaanika) 4. ainehulk 1 mol (molekulaarfüüsika) 5. temperatuur 1 K (kelvini kraad, soojusõpetus) 6. elektrivoolu tugevus 1 A (elekter) 7. valgusallika valgustugevus 1 cd (optika) Täiendavad ühikud on 1 rad (radiaan) ­ nurgaühik ­ ja 1 sr (steradiaan) ­ ruuminurga ühik. m m Tuletatud ühikud on kõik ülejäänud, mis on avaldatavad põhiühikute kaudu, näiteks 1 ,1 2 , s s kg m 1 N 2 , 1 J ( N m) . s Mitte SI ühikud on ajaühikud 1 min, 1 h, nurgaühik nurgakraad, töö- või energiaühik 1 kWh, rõhuühik 1 mmHg. Ühikute eesliited: piko- (p) 10-12

Füüsika
45 allalaadimist
thumbnail
18
doc

Füüsika riigieksami konspekt

FÜÜSIKA RIIGIEKSAMI KONSPEKT TTG 2005 SISSEJUHATUS. MÕÕTÜHIKUD SI ­ System International, 7 põhisuurust ja põhiühikut: 1. pikkus 1 m (mehaanika) 2. mass 1 kg (mehaanika) 3. aeg 1s (mehaanika) 4. ainehulk 1 mol (molekulaarfüüsika) 5. temperatuur 1 K (kelvini kraad, soojusõpetus) 6. elektrivoolu tugevus 1 A (elekter) 7. valgusallika valgustugevus 1 cd (optika) Täiendavad ühikud on 1 rad (radiaan) ­ nurgaühik ­ ja 1 sr (steradiaan) ­ ruuminurga ühik. m m Tuletatud ühikud on kõik ülejäänud, mis on avaldatavad põhiühikute kaudu, näiteks 1 ,1 2 , s s kg m 1 N 2 , 1 J ( N m) . s Mitte SI ühikud on ajaühikud 1 min, 1 h, nurgaühik nurgakraad, töö- või energiaühik 1 kWh, rõhuühik 1 mmHg. Ühikute eesliited: piko- (p) 10-12

Füüsika
1329 allalaadimist
thumbnail
28
pdf

Impulss, energia, töö

tagasilöögina, sest laskuri õlg pidurdab relva liikumise. Antud juhul on tagasilöök suhteliselt väike, tugevamajõulistel relvadel (näiteks vintpüssidel) on tagasilöök suurem ja laskuri õlg liigub peale lasu sooritamist märgatavalt tagasi. Vastus: relva tagasilöögi kiirus peale lasu sooritamist on 0,8 m/s. 3.2 Töö Muutumatu jõu korral avaldub töö järgmise valemiga A = F s cos , kus s on keha poolt vaadeldava jõu mõjul läbitud teepikkus ja on nurk jõu mõjumise suuna ja keha liikumissuuna vahel. Sõltuvalt jõu mõjumise suunast võib töö olla nii positiivne kui ka negatiive. Kui aga kehale mõjuv jõud on risti keha liikumissuunaga, siis on selle jõu töö võrdne nulliga. Nii näiteks on niidi otsas oleva kuulikese ühtlasel ringliikumisel (pöörlemisel) niidi tõmbe poolt tehtav töö võrdne nulliga, sest niidi tõmme on risti kuulikese kiirusega ja seetõttu ka kuuli liikumissuunaga. Raskusjõu töö

Füüsika
51 allalaadimist
thumbnail
18
pdf

MOLEKULAARFÜÜSIKA ALUSED

KOOLIFÜÜSIKA: SOOJUS 1 (kaugõppele) 4. MOLEKULAARFÜÜSIKA ALUSED Molekulaarfüüsika käsitleb soojusprotsesse, lähtudes aine koosseisu kuuluvate aatomite (molekulide) soojusliikumisest. Gaaside kirjeldamisel kasutame ideaalse gaasi mudelit. Ideaalse gaasi korral jäetakse molekulidevahelised jõud arvestamata, mistõttu gaasi siseenergia on gaasi molekulide summaarne kineetiline energia. Gaasid tavatingimustes (veeldumistemperatuurist kõrgematel temperatuuridel ja normaalsetel rõhkudel) on küllalt hästi vaadeldavad ideaalse gaasina. 4.1 Mool, molaarmass, ühe molekuli mass Mool on SI-süsteemi ainehulga ühik. Mool on süsteemi ainehulk, mis sisaldab sama palju elementaarseid koostisosakesi, nagu on aatomeid 0,012 kilogrammis ¹²C (süsiniku isotoobis massiarvuga 12). Mooli kasutamisel peab täpsustama koostisosakeste tüüpi, milleks võivad olla aatomid, molekulid, ioonid, elektronid, mingid teised osakesed või eespool nimetatud osakeste kindlalt määratletud gr

Füüsika
60 allalaadimist
thumbnail
18
pdf

Füüsika I kodune töö TKTK

5 t := 30min d := 2cm 3 m Leiame gaasi ruumala: mg Vg := = 68⋅ L ρ Leiame toru ristlõike pindala: 2  d  ⋅ π = 3.142⋅ cm2 St := 2   Leiame gaasi läbitud teepikkuse: Vg x := x = 216.451 m St Leiame gaasi voolukiiruse: x m vg := = 0.12 t s m Vastus: gaasi voolukiirus on vg = 0.12 . s Ülesanne 8. Gaasiballoonis mahuga 100 L on hapnik temperatuuril 0 ºC ja rõhul 30 atm. Leida hapniku mass, kui hapniku tihedus normaaltingimustel (0 ºC ja 1 atm) on 0,00142 g/cm^3. gm V1 := 100L T := 0C P1 := 30atm ρ := 0.00142 Pnorm := 1atm 3

Füüsika
45 allalaadimist
thumbnail
24
docx

Hüdraulika ja pneumaatika kodused ülesanded

Ülessane 7 (variant 4) Torustikus mille siseläbimõõt on d mm, voolab vedelik kiirusega v m/s. vedeliku tihedus on kg/m3. Arvutada, milline on rõhukadu meetrites ja barides, kui torustiku pikkus on l m. vedeliku kinemaatilise viskoossuse tegur on mm2/s. kohalike takistuste tegurite summa on . Antud: d = 12 mm v = 2,5 m/s = 800 kg/m3 l = 140 m = 30 mm2/s = 24 Leida: h1-2= ? m p1-2= ? bar Teisendan ühikud sobivaks: Arvutan Reynoldsi arvu: v ­vedeliku voolukiirus, m/s; d ­toru siseläbimõõt, m; ­vedeliku kinemaatilise viskoossuse tegur, m2/s Re ­Reynoldsi arv, dimonsioonita suurus. Re<2300, järelikult tegemist on laminaarse voolamisega, arvutan hõõrdetakistuse teguri. ­hõõrdetakistuse tegur. Arvutan hõõrdetakistusest ja kohalikest takistustest tingitud rõhukadu meetrites: hh1-2 ­hõõrdetakistusest tingitud rõhukadu vedeliku voolamisel voolu ristlõikest 1 ristlõikesse 2

Hüdraulika ja pneumaatika
283 allalaadimist
thumbnail
4
doc

Gravitatsiooniseadus ja võnkumine

  Kahe  järjestikuse  sooritatud võngete arv – võnkesagedus (nurksagedus): 0=2=2/T; Võrrand on x= a(t)cos(t+0) ja lahend a=a0e-T.   2Molekulide vaba tee kesk. pikkus kiirus v=x=Acos(t+0)= vmaxsin(t+0+/2); Sumbuvate võnkumiste periood :   põrke vahel läbib

Füüsika
10 allalaadimist
thumbnail
21
doc

Soojustehnika küsimuste vastused

V1 , (J) -> isobaarne kg v2 J l = p dv, v1 kg A ­ kolvi pindala, dL ­ elementaarne töö, L ­ terve töö, dy ­ teepikkus Mehhaaniline töö (l) (pindala mis jääb protsessi kõvera ja v telje vahele) (töö loetakse positiivseks gaasi paisudes) 9. Tehniline töö e.(rõhumuutuse töö), arvutamine (valem) ja kujutamine olekudiagrammil. Soojusmootorid töötavad lahtiste süsteemidega. Selliste süsteemide korral termodünaamiline keha läbib agregaati (riista) pideva voolusena

Soojustehnika
400 allalaadimist
thumbnail
12
pdf

8. klassi raudvara: PTK 4

sarnaseid liikmeid sisaldava võrrandi 6x-15y=-8 normaalkuju puhul: korrutada pooli murdude ühise nimetajaga, sulgudest vabanemisel kasutada korrutamise jaotuvuse seadust a(b+c)=ab+ac; viia tundmatuid sisaldavad liikmed võrrandi vasakule ning vabaliikmed paremale poolele; koondada ja kirjutada saadud liikmed nõutud järjekorras NB vaja kasutada kahe tundmatuga lineaarvõrrandisüsteemi lahendamisel: enne ei hakka lahendama, kui süsteem on normaalkujul 3.Kahe tundmatuga võrrandi lahend - Ül.909 järjestatud arvupaar; lõpmatu hulk Võrrand 4u+0,5v=2 lahendeid; võrrandi ax+by=c lahend Antud u {1;-0,5;-3,5} kirjutatakse kujul: Leida võrrandi lahendid x=p y=q või need kaks võrdust üksteise alla ja ette loogeline sulg või (p;q) 1)kui u=1, siis 4 1+0,5v=2; 0,5v=2-4; 0,5v=-2; v=-4; lahend on (1;-4)

Matemaatika
139 allalaadimist
thumbnail
25
doc

Termodünaamika õppematerjal

"). Dünaamikas uuritakse just liikumise põhjusi (otsitakse vastust küsimusele "miks?"). Staatika vaatleb kehade suhtelise paigalseisu tingimusi. 3.2. Punktmassi kinemaatika. Kiirus, kiirendus. Kui punktmass läbib mistahes võrdsetes ajavahemikes võrdsed teepikkused, siis nimetatakse liikumist ühtlaseks. Ühtlase liikumise kiiruseks nimetatakse füüsikalist suurust, mida mõõdetakse ajaühikus läbitud teepikkusega. Kui keha ajavahemiku t jooksul läbib vahemaa s, siis kiirus avaldub: s v= .(2.1) t Liikumist iseloomustab peale kiiruse arvväärtuse ka siht ja suund ruumis. Sirgjoonelisel liikumisel määrab punktmassi trajektoor ise liikumise sihi Joon. 2.1

172 allalaadimist
thumbnail
54
pdf

SOOJUSTEHNIKA EKSAMI VASTUSED

SOOJUSTEHNIKA EKSAMI VASTUSED 1. Termodünaamiline keha e. töötav keha. Termodünaamilises süsteemis asuvat keha või kehi, mille vahendusel toimub energiate vastastikune muundumine nim. termodün.kehaks. Termodün.kehaks on veel keha, mille kaudu toimub soojuse muundumine mehaaniliseks tööks või töö muundamine soojuseks. Tdk võivad olla nii tahked, vedelad kui gaasilised kehad. Soojusjõumasinates nagu sisepõlemismootor soojuse muundumisel mehaaniliseks tööks on tdk tavaliselt kütuse põlemisgaasid. Aurujõuseadmetes on enamikul juhtudel tdk veeaur. Töötava keha olekuparameetrid. Neande all mõistetakse füüsikalisi makrosuurusi, mis määravad kindlaks töötava keha oleku. Intensiivseteks nim. selliseid töötava keha parameetreid, mis ei sõltu termodün.süsteemis oleva keha massist või osakeste arvust. Intensiivne parameeter on nt. rõhk ja temp. Aditiivseteks e. ekstensiivseteks termodün parameetriteks on parameetrid, mis on propor

Soojustehnika
46 allalaadimist
thumbnail
27
doc

Mehaanika

minut 60 1 1/60 tund 3600 60 1 Näiteks: 1,3 min. = 1,3 x 60 = 78 s 5/6 min = 5/6 x 60 = 50 s Kordamisküsimusi: Mille eest maksame takso kasutamisel - teepikkusee või nihke eest? Pall kukkus kolme meetri kõrguselt, põrkus põrandalt ja püüti kinni ühe meetri kõrguselt. Milline on palli poolt läbitud teepikkus ja nihe ? 3. Millist trajektoori mööda liigub jalgrattapedaal maantee , jalgrattaraami ja jalgratturi saapa suhtes ? 4. Millisel järgmistest juhtumitest võib keha vaadelda punktmassina: a) auto sõidab Tartust Tallinna. b) auto sõidab praamile. c) sateliit tiirleb ümber Maa. d) eesriie langeb. 5. Too näiteid liikumise kohta, kus nihe on a) võrdne teepikkusega b) teepikkusest lühem c) võrdne nulliga 6. Staadioni ringraja pikkus on 400 m

Füüsika
193 allalaadimist
thumbnail
24
pdf

Füüsika 1 eksam

kahanema) süsteemi nurkkiirus. Võnkumised ja lained Võnkumiseks nimetatakse füüsikalise suuruse muutust, milles see kaldub oma keskmisest väärtusest kõrvalde kord ühes, kord teises suunas. Mehaaniline võnkumine on keha liikumine, milles see kaldub oma tasakaaluasendist kõrvale kord ühes, kord teises suunas. 37. Harmooniline ostsillaator: võnkumine , võnkeperiood ja sagedus; harmoonilise võnkumise diferentsiaalvõrrand ja selle lahend (harmoonilise võnkumise võrrand); harmooniliselt võnkuva punktmassi kiirus ja kiirendus, nende graafikud; harmoonilise võnkumise energia ja graafik faasiruumis. Harmooniliseks nimetatakse võnkumist, milles võnkuv suurus muutub ajas sinusoidaalse seaduspärasuse järgi. Teisisõnu veel: harmooniline võnkumine on võnkumine hälbega võrdelise ja tasakaaluasendi poole suunatud jõu mõjul. Faas kirjeldab olukorda, milles võnkuv keha antud hetkel viibib = 0t + 0

Füüsika
193 allalaadimist
thumbnail
15
doc

Soojusõpetus

) Näiteks leiame hapniku molekuli moolmassi. Hapniku aatommass on 16 s..t. M = 2×16 = 32 g/ mol. SI- sûsteemis peab mass olema kilogrammides, siis hapniku molekulmass on 0,032 kg/mol. Süsihappegaasi valem ­ CO2 . Süsiniku aatomimass - 12 M =12+2×16 = 44 g/mol. = 0.044 kg/mol. Näidisülesanne Sauna leiliruumi temperatuur oli 900C normaalrôhul ( 105 Pa). Palju tuleb veeauru, kui kerisele visati 1 liiter vett ? Andmed Lahend T=900C = 90 + 273 = 363 K M vesi=2 x 1 + 16=18g/mool = 0,018 kg/mool p = 105 Pa pV = mRT/M V = mRT/pM m = 1 liiter vett = 1 kg R = 8,31 J/mol.K V = ( 1 x 8,31 x 363 )/ 105 x 0,018 = 1,63 m2 V=? 5. Siseenergia ja selle muutumine. Molekulaarkineetilise teooriast lähtudest on keha siseenergia tema kõikide molekulide ( ka aatomite, ioonide, vabade elektronide jt

Füüsika
178 allalaadimist
thumbnail
15
doc

Füüsika I eksami piletid

Sümmeetriline kuju oleks: k=2/. Tasalaine võrrand on kujul: =acos(t-kx). KERALAINE võrrand- Igal reaalsel laineallikal on teatud mõõtmed, kuid teda võib lugeda punktallikaks, vaadeldes lainet allika mõõtmeid tunduvalt ületaval kaugusel. Juhul kui laine levimise kiirus on kõikides suundades ühesugune, on punktallika tekitatud laine sfääriline ja keralaine võrrand on selline: =a/r *cos(t- r/v). §48. Lainevõrrand. Iga laine võrrand on teatud diferentsiaalvõrrandi lahend. Seda diferentsiaalvõrr. nimet. lainevõrrandiks. Viimase kuju kindlakstegemiseks kõrvutame tasalainet kirjeldava fun.-ni (x,y,z;t)=a cos(t-kxx-kyy-kzz) koordinaatide ja aja järgi võetud teist järku osatuletisi. Diferentseerinud (x,y,z;t)=a cos(t-kxx-kyy-kzz) kaks korda mõlema muutuja järgi saan: 2/t2=-2acos(t-kr)=-2, 2/x2= -k2xacos(t-kr)= -k2x 2/y2= -k2yacos(t-kr)= -k2y 2/z2= -k2zacos(t-kr)= -k2z

Füüsika
1097 allalaadimist
thumbnail
15
doc

KODUTöö AINES "MASINATEHNIKA"

TALLINNA TEHNIKAÜLIKOOL MEHHATROONIKAINSTITUUT KODUTÖÖ AINES "MASINATEHNIKA" TIGUÜLEKANNE JA VÕLLIKOOSTU PROJEKTEERIMINE ÜLIÕPILANE: KOOD: JUHENDAJA: Igor Penkov TALLINN 2006 Sisukord 1. Mootori valik ................................................................................................... 3 2. Tiguülekanne arvutus ....................................................................................... 4 3. Võlli projektarvutus ......................................................................................... 7 4. Võlli kontrollarvutus ........................................................................................ 9 5. Liistu arvutus ................................................................................................... 10 6. Siduri valik ........................................................................

Masinatehnika
224 allalaadimist
thumbnail
9
doc

Füüsika I kordamiskonspekt

Kiirus Puntki asukoha ruumis määrab raadiusvektor r. Aja ja raadiusvektori juurdekasvu abil saame r moodustada suhte . Antud juhul sõltuvad vektori moodul ja suund ajavahemiku t t suurusest.. Kui seda vähendada, siis väheneb ka r. St et t nullile lähenemisel nullile läheneb antud suhe teatud piirväärtusele, mida nimetatakse liikumise kiiruseks- r dr v = lim . Kiirust võib määrata ka raadiusvektori tuletisena aja järgi- v = . Kiirus on t 0 t dt vektoriline suurus. Teelõik s on üldjuhul erinev suuruse poolest nihke moodulist r . Kui aga vaadelda väikestele ajavahemikele t vastavaid teelõike s , siis teelõik ja nihke r s ds moodul erinevad vähe, seega- lim

Füüsika
423 allalaadimist
thumbnail
90
pdf

Soojustehnika eksami küsimused

Sellelt lingilt saab tõmmata Arvo otsa soojustehnika raamatu. http://digi.lib.ttu.ee/i/?967 Faili lõpus on eksami näide, mida tunnis vaadati. 1. Termodünaamika põhimõisted, termodünaamiline süsteem, termodünaamiline keha jatermodünaamilised olekuparameetrid. Termodünaamiline süsteem. Nimetus „termodünaamika” hõlmab see mõiste kõik nähtused mis kaasnevad energiaga ja energia muundusega. Jaguneb füüsikaline, keemiline ja tehniline termodünaamika. Tehniline termodünaamika käsitleb ainult mehaanilise töö ja soojuse vastastikuseid seoseid. Termodünaamiline süsteem on kehade kogu, mis võivad olla nii omavahel kui ka väliskeskkonnaga energeetilises vastasmõjus. Väliskeskkond on termodünaamilist süsteemi ümbritsev suure energia mahtuvusega keskkond, mille teatud olekuparameetrid (T, p jne.) ei muutu, kui süsteem mõjutab teda soojuslikul, mehaanilisel või mõnel muul viisil. Termodünaamilise süsteemi üks lihtne näide on gaas balloonis. Süsteemi j

tehnomaterjalid
121 allalaadimist
thumbnail
26
doc

Tahke keha mehhaanika.

"). Dünaamikas uuritakse just liikumise põhjusi (otsitakse vastust küsimusele "miks?"). Staatika vaatleb kehade suhtelise paigalseisu tingimusi. 3.2. Punktmassi kinemaatika. Kiirus, kiirendus. Kui punktmass läbib mistahes võrdsetes ajavahemikes võrdsed teepikkused, siis nimetatakse liikumist ühtlaseks. Ühtlase liikumise kiiruseks nimetatakse füüsikalist suurust, mida mõõdetakse ajaühikus läbitud teepikkusega. Kui keha ajavahemiku t jooksul läbib vahemaa s, siis kiirus avaldub: s v= . (2.1) t 1 Liikumist iseloomustab peale kiiruse arvväärtuse ka siht ja suund ruumis. Sirgjoonelisel

Füüsika
99 allalaadimist
thumbnail
15
pdf

TERMODÜNAAMIKA ALUSED

KOOLIFÜÜSIKA: SOOJUS 2 (kaugõppele) 5. TERMODÜNAAMIKA ALUSED 5.1 Termodünaamika I seadus Termodünaamika I seadus annab seose kehale antava soojushulga, keha siseenergia ja paisumistöö vahel Q = U + A , kus Q on juurdeantav soojushulk, U siseenergia muut ja A paisumistöö. Juhul kui keha saab väljastpoolt mingi soojushulga, on Q positiivne ( Q > 0), juhul kui keha annab ära mingi soojushulga, on Q negatiivne ( Q < 0). Juhul kui keha teeb paisumisel (kasulikku) tööd, on A positiivne ( A > 0), juhul kui aga keha kokkusurumiseks tehakse (välist) tööd, on A negatiivne ( A < 0). Keha siseenergia on molekulide soojusliikumise summaarne kineetiline energia ja molekulide vastastikmõju potentsiaalse energia summa, ideaalse gaasi korral aga summaarne kineetiline energia. Soojushulk on energia, mis antakse kehale soojendamisel, või võetakse kehalt jahutamisel. Soojushulk arvutatakse valemist Q = c m T , kus c on aine erisoojus, m keha mass ja T temperatuuri muut. I

Füüsika
39 allalaadimist
thumbnail
210
docx

Elektroonilised laevajuhtimisseadmed konspekt

Radarid Raadiolokatsioonialused 1.1Raadiolokatsiooni põhimõte Raadiolokatsiooniks nimetatakse objektide avastamist ja avastatud objektide koordinaatide määramist meetodi abil, mis põhineb raadiolainete tagasipeegeldamisel ja peegeldunud raadiolainete vastuvõtul. Sellel põhimõttel töötavat seadet nimetatakse raadiolokaatoriks. Igapäevases keelepruugiks nimetatakse raadio- lokaatorit ka radariks. Termin tuleneb inglise keelest sõnast Radar – radiodetection and ranging 1.2 Radari töö põhimõte Navigatsiooniline raadiolokaator töötab järgmiselt. Saatja genereerib ja kiirgab ülikõrgsageduslikke raadiolaineid, mis sondeerivad ümbritsevat keskkonda. Kui raadiolaine teele satub keha, mille dielektriline läbitavus erineb keskkonna omast, siis teatud osa kehale langevast energiast peegeldub kajana tagasi, millest osa võtab vastu raadiolokaatori antenn ja kuvarile ilmub objekti kaja helendava punkti näol . Sellega on täidetud üks raadioloka

Laevandus
29 allalaadimist
thumbnail
11
doc

Keemia Praktikumi KT vastused

Kordamisküsimused Mõisted 1. Mool ­ aine hulk, mis sisaldab 6,02 10 23 ühe ja sama aine ühesugust osakest. 2. Molaarmass ­ on ühe mooli aine mass grammides, dimensiooniks on g/mol. 3. Avogardo seadus ­ Kõikide gaaside võrdsed ruumalad sisaldavad ühesugusel temperatuuril ja rõhul võrdse arvu molekule. 4. Daltoni seadus ­ Keemiliselt inaktiivsete gaaside segu üldrõhk võrdub segu moodustavate gaaside osarõhkude summaga. Osarõhk on rõhk, mida avaldaks gaas, kui teisi gaase segus poleks. 5. Gaasi suhteline tihedus ­ on ühe gaasi massi suhe teise gaasi massi samadel tingimustel. Gaasi suhteline tihedus on ühikuta suurus ja näitab, mitu korda on antud gaas teisest raskem või kergem. 6. Gaasi absoluutne tihedus ­ ühe kuupdetsimeetsi gaasi mass normaaltingimustel. 7. Ideaalgaaside seadused ­ Boyle´i seadus ­ Konstantsel temperatuuril on kindla koguse gaasi maht (V) pöördvõrdelises sõltuvuses rõhu

Keemia alused
36 allalaadimist
thumbnail
11
doc

Praktikumi KT vastused

Kordamisküsimused Mõisted 1. Mool ­ aine hulk, mis sisaldab 6,02 10 23 ühe ja sama aine ühesugust osakest. 2. Molaarmass ­ on ühe mooli aine mass grammides, dimensiooniks on g/mol. 3. Avogardo seadus ­ Kõikide gaaside võrdsed ruumalad sisaldavad ühesugusel temperatuuril ja rõhul võrdse arvu molekule. 4. Daltoni seadus ­ Keemiliselt inaktiivsete gaaside segu üldrõhk võrdub segu moodustavate gaaside osarõhkude summaga. Osarõhk on rõhk, mida avaldaks gaas, kui teisi gaase segus poleks. 5. Gaasi suhteline tihedus ­ on ühe gaasi massi suhe teise gaasi massi samadel tingimustel. Gaasi suhteline tihedus on ühikuta suurus ja näitab, mitu korda on antud gaas teisest raskem või kergem. 6. Gaasi absoluutne tihedus ­ ühe kuupdetsimeetsi gaasi mass normaaltingimustel. 7. Ideaalgaaside seadused ­ Boyle´i seadus ­ Konstantsel temperatuuril on kindla koguse gaasi maht (V) pöördvõrdelises sõltuvuses rõhu

Keemia alused ii
167 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun