Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
Ega pea pole prügikast! Tõsta enda õppeedukust ja õpi targalt. Telli VIP ja lae alla päris inimeste tehtu õppematerjale LOE EDASI Sulge

Võrrandisüsteemide koostamine tekstülesannete põhjal I osa - sarnased materjalid

lahend, võrrandisüsteem, geomeetriline, määramiseks, avame, sulud, lahendame, avaldise, parajasti, võrrandid, tähega, esimesest, risttahuka, servade, lepikult, saime, esmalt, kujule, leidsime, rahuldab, samade, juttu, ruutu, avaldist, lahendid
thumbnail
12
pdf

8. klassi raudvara: PTK 4

sarnaseid liikmeid sisaldava võrrandi 6x-15y=-8 normaalkuju puhul: korrutada pooli murdude ühise nimetajaga, sulgudest vabanemisel kasutada korrutamise jaotuvuse seadust a(b+c)=ab+ac; viia tundmatuid sisaldavad liikmed võrrandi vasakule ning vabaliikmed paremale poolele; koondada ja kirjutada saadud liikmed nõutud järjekorras NB vaja kasutada kahe tundmatuga lineaarvõrrandisüsteemi lahendamisel: enne ei hakka lahendama, kui süsteem on normaalkujul 3.Kahe tundmatuga võrrandi lahend - Ül.909 järjestatud arvupaar; lõpmatu hulk Võrrand 4u+0,5v=2 lahendeid; võrrandi ax+by=c lahend Antud u {1;-0,5;-3,5} kirjutatakse kujul: Leida võrrandi lahendid x=p y=q või need kaks võrdust üksteise alla ja ette loogeline sulg või (p;q) 1)kui u=1, siis 4 1+0,5v=2; 0,5v=2-4; 0,5v=-2; v=-4; lahend on (1;-4)

Matemaatika
139 allalaadimist
thumbnail
8
pdf

Determinandid gümnaasiumiõpikus

vabaliikmetega. Neid determinante tähistatakse lühidalt tähtedega Dx ja Dy. a 2 ab b 2 a b u v u v u 3 v 3 a1 x + b1 y = c1 477. Lahenda võrrandisüsteemid determinantide abil. Seega võrrandisüsteemi lahend esitub kujul a 2 x + b 2 y = c 2 ¦ x 3y 4 ¦5 x 6 y 11 ¦3x 4 y 0 a) § b) § c) § x Dx ja y Dy , kus D 0

Matemaatika
39 allalaadimist
thumbnail
29
doc

Ruutvõrrand

Ülesannete lahendused pärinevad õpikust "Matemaatika IX klassile"(koost. Tõnu Tõnso ,Tln., 1998), lk-74-78 (ül.269-391) ja kogumikust "Matemaatika kirjaliku eksami ülesanded IX klassile"* (koost. Enn Nurk ja Valvo Paat, Tln., 1996). * ülesanded tähistatud E-tähega. Paljude tekstülesannete lahendamisel jõuame ruutvõrrandini, millel on tavaliselt 2 lahendit. Olenevalt ülesande sisust võib aga ülesande vastuseks sobida ainult üks lahend. Tekstülesannete puhul tuleb võrrandi lahendeid kontrollida ülesande teksti, mitte koostatud võrrandi järgi. Tekstülesande lahendamine võrrandi abil koosneb kolmest etapist: 1. võrrandi koostamine teksti järgi; 2. koostatud võrrandi lahendamine; 3. võrrandi lahendite kontroll teksti järgi, lõplik lahendite leidmine ja vastuse kirjutamine. Mõningaid näpunäiteid võrrandi koostamiseks. Põhinõue - loe teksti ülima tähelepanuga, sest tekstis on kogu ülesande sisu

Matemaatika
212 allalaadimist
thumbnail
28
doc

Ruutvõrrandi abil lahenduvaid ülesandeid

Ülesannete lahendused pärinevad õpikust "Matemaatika IX klassile"(koost. Tõnu Tõnso ,Tln., 1998), lk-74-78 (ül.269-391) ja kogumikust "Matemaatika kirjaliku eksami ülesanded IX klassile"* (koost. Enn Nurk ja Valvo Paat, Tln., 1996). * ülesanded tähistatud E-tähega. Paljude tekstülesannete lahendamisel jõuame ruutvõrrandini, millel on tavaliselt 2 lahendit. Olenevalt ülesande sisust võib aga ülesande vastuseks sobida ainult üks lahend. Tekstülesannete puhul tuleb võrrandi lahendeid kontrollida ülesande teksti, mitte koostatud võrrandi järgi. Tekstülesande lahendamine võrrandi abil koosneb kolmest etapist: 1. võrrandi koostamine teksti järgi; 2. koostatud võrrandi lahendamine; 3. võrrandi lahendite kontroll teksti järgi, lõplik lahendite leidmine ja vastuse kirjutamine. Mõningaid näpunäiteid võrrandi koostamiseks. Põhinõue - loe teksti ülima tähelepanuga, sest tekstis on kogu ülesande sisu

Algebra I
13 allalaadimist
thumbnail
28
doc

Ruutvõrrandi abil lahenduvaid ülesandeid

Ülesannete lahendused pärinevad õpikust "Matemaatika IX klassile"(koost. Tõnu Tõnso ,Tln., 1998), lk-74-78 (ül.269-391) ja kogumikust "Matemaatika kirjaliku eksami ülesanded IX klassile"* (koost. Enn Nurk ja Valvo Paat, Tln., 1996). * ülesanded tähistatud E-tähega. Paljude tekstülesannete lahendamisel jõuame ruutvõrrandini, millel on tavaliselt 2 lahendit. Olenevalt ülesande sisust võib aga ülesande vastuseks sobida ainult üks lahend. Tekstülesannete puhul tuleb võrrandi lahendeid kontrollida ülesande teksti, mitte koostatud võrrandi järgi. Tekstülesande lahendamine võrrandi abil koosneb kolmest etapist: 1. võrrandi koostamine teksti järgi; 2. koostatud võrrandi lahendamine; 3. võrrandi lahendite kontroll teksti järgi, lõplik lahendite leidmine ja vastuse kirjutamine. Mõningaid näpunäiteid võrrandi koostamiseks. Põhinõue - loe teksti ülima tähelepanuga, sest tekstis on kogu ülesande sisu

Matemaatika
21 allalaadimist
thumbnail
100
pdf

MATEMAATIKA TÄIENDUSÕPE

54 : ( −6 ) = −9 (jagatav ja jagaja on erimärgilised, jagattis on negatiivne arv) −36 : ( +9 ) = −4 (jagatav ja jagaja on erimärgilised, jagattis on negatiivne arv) −56 : ( −7 ) = 8 (jagatav ja jagaja on ühemärgilised, jagattis on positiivne arv) 2.7 Näited tehete kohta ratsionaalarvudega Mitme tehtega ülesandes kõigepealt korrutatakse või jagatakse ja seejärel liidetakse või lahutatakse. Kui ülesandes esinevad sulud, siis tehakse tehted esmalt ümarsulgudes, siis nurksulgudes ja seejärel looksulgudes. Näide 1. Arvutada  1 1  1  ( 30 + 225 ) ⋅ 9 + 0,16 : ( 3 − 0, 3) . Lahendus. Kirjutame tehete kohale nende järjekorra numbri ja arvutame.  1 1. 1 2. 3.  5. 1 4. ( +

Matemaatika
75 allalaadimist
thumbnail
18
ppt

Võrrandisüsteemide koostamine tekstülesannete põhjal III osa

t1 t1 + 2 600 600t1 + 1200 = t1 (t1 + 2) + 10 t1 (t1 + 2) t1 + 2 600t1 + 1200 = 600t1 + 10 t12 + 20t1 10 t12 + 20t1 - 1200 = 0 t12 + 2t1 - 120 = 0 Ülesanne 1 (5) Lahendus jätkub ... t12 + 2t1 - 120 = 0 Lahendame saadud ruutvõrrandi: 2 2 2 t1 = - ± + 120 = -1± 121 = -1± 11 2 2 Negatiivne lahend t1 = -1 - 11 = -12 on võõrlahend, sest aeg ei saa olla negatiivne. Teiseks lahendiks on t1 = -1 + 11 = 10. Kontrollime selle sobivust. Ülesanne 1 (6) Lahendus jätkub ... Kontrollime lahendi sobivust. Kui esimesel rongil kulus aega 10 tundi, siis saame esimese rongi kiiruseks

Matemaatika
82 allalaadimist
thumbnail
17
docx

VÕRRANDID (mõisted)

Lahendada võrrand tähendab leida tundmatu kõik need väärtused, mis rahuldavad võrrandit (st tundmatu asendamisel lahendiga muutub võrrand samasuseks). Võrrandi lahendamisel püütakse võrrandit teisendada nii, et iga uus võrrand oleks eelmisega samaväärne. Lubatud teisendused (võrrandi põhiomadused) on järgmised: 1) võrrandi pooli võib vahetada; 2) võrrandi mõlemale poolele võib liita või mõlemast poolest lahutada ühe ja sama arvu või muutujat sisaldava avaldise (mis omab mõtet võrrandi kogu määramis- piirkonnas), see annab sisuliselt teisenduse, mida tuntakse kui võrrandi liikmete teisele poole võrdusmärki viimist muutes samal ajal liikmete märgid vastupidisteks; 3) võrrandi mõlemat poolt võib korrutada või jagada ühe ja sama nullist erineva arvuga või muutujat sisaldava avaldisega, mis ei võrdu nulliga muutuja ühegi väärtuse korral LINEAARVÕRRAND

Matemaatika
14 allalaadimist
thumbnail
12
ppt

Võrrandisüsteemide koostamine tekstülesannete põhjal II osa

Võrrandisüsteemide koostamine tekstülesannete põhjal II osa © T. Lepikult, 2003 Kahekohalised arvud Ülesanne 1 Kahekohalise arvu numbrite summa on 12. Selle arvu numbrite ümberpaigutamisel saame arvu, mis on esialgsest 18 võrra väiksem. Leida esialgne arv Lahendus Seda tüüpi ülesannetes tuleb otsitavat arvu vaadelda kujul z = 10x + y , kus x näitab kümneliste arvu ja y üheliste arvu. Tasub tähele panna, et otsitavad x ja y peavad olema täisarvud ning rahuldama võrratusi 0 < x < 10, 0 y < 10. Ülesanne 1 (2) Lahendus jätkub ... Kui ülesannet lahendades peaksime saama otsitavatele niisugused väärtused, mis neid võrratusi ja/või täisarvulisuse nõuet rikuvad, tuleb hakata lahenduskäigust vigu otsima. Kuna ülesande püstituse kohaselt peab otsitava arvu numbrite summa olema 12, saame esimeseks võrrandiks

Matemaatika
97 allalaadimist
thumbnail
40
doc

Keskkooli matemaatika raudvara

........................................................................................12 Relatiivne viga (suhteline viga)..........................................................................................12 Arvu tüvenumbrid...................................................................................................................12 Arvu standardkuju.................................................................................................................. 12 II Võrrandid ja võrratused.......................................................................................................... 12 Võrrandid................................................................................................................................12 Võrrandi samaväärsus.............................................................................................................13 Lineaarvõrrand............................................................................

Matemaatika
1453 allalaadimist
thumbnail
14
docx

Diferentsiaalvõrrandite eksami konspekt

integraaljooneks. Kui n-järku võrrandile lisada n-algtingimust: (1.4) Siis saame algväärtuseks ülesande (1.1). esimest järku algväärtus ülesanne koosneb võrranditest ja ühest algtingimusest. (1.5) Def 1.3 Võrrandi (1.1) lahendit, mis rahuldab ka algtingimusi (1.4) nim selle võrrandi erilahendiks. Teist või kõrgemat järku võrrandile võib püstitada ka raja (väärtus) ülesande. 2. Dif.võr geomeetriline tõlgendus Esimest järku võrrandi ligikaudne lahendamise idee. Vaatleme esimest järku dif.võr. (2.1) See võrrand määrab igas tasapinna punktis P(x,y) tuletise y' väärtuse. Tuletis on aga võrdne integraaljoone tõusuga (täisnurgatang). Järelikult saame selle funktsiooni f(x,y) määramispiirkonnas suunavälja või vektorvälja . Iga lahendi integraaljoon läbib suunavälja nii, et igas punktis puudutab ta vektorvälja vektorit . erilahend, mis

Dif.võrrandid
419 allalaadimist
thumbnail
78
pdf

Majandusmatemaatika

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Kasumifunktsioon lineaarse nõudlus- ja kulufunktsiooni korral. . . . . . . . . . . . . . . . . . . . . . 15 ÜLESANNETE VASTUSED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3. VÕRRANDID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Lineaarsed võrrandid. Tasuvusanalüüs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Ruutvõrrandid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 ÜLESANNETE VASTUSED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4. PROTSENT- JA FINANTSARVUTUSED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Raamatupidamise alused
399 allalaadimist
thumbnail
9
doc

Põhivara 7. klass

nimetatakse neid sarnasteks liikmeteks. Näiteks: a + a + a = 3a a * a * a * a = a4 a +b + a + a + b = 3a + 2b xy + xy = 2xy xy * xy = x2 * y2 3a + 4b + 2a + 5b = 5a + 9b Sellist liikmete liitmist või lahutamist nimetatakse koondamiseks. Kui avaldises on vastandarvud, siis need lihtsalt taanduvad. ( Tõmban maha / ) NB: Pane tähele märke! Sulgude avamine: Kui avaldises esinevad sulud, tuleb nendest vabaneda, seda teguviisi nimetatakse sulgude avamiseks. Näiteks: 2*(5a + 6b) = 2*5a + 2*6b = 10a + 12b (2x ­ 3y + 4z)3 = 3*2x ­ 3*3y + 3*4z = 6x ­ 9y + 12z -(2b + 4c ­ 3a -1) = -2b ­ 4c + 3a + 1 NB: Miinus märk sulu ees muudab märgid sulu sees! Võrrandid: Võrrand on võrdus, mis sisaldab tundmatut suurust. Tundmatu väärtus on võrrandi lahend. Võrrandil võib olla: 1) üks lahend Nt: 2x = 10 | :2

Matemaatika
277 allalaadimist
thumbnail
12
doc

Kahe tundmatuga lineaarvõrrandisüsteemi lahendamine erinevate viisidega

Kuna selles võrrandsüsteemis vastandarve ei esine, võime me laiendada ühte võrrandit, et tekiks vastandarvud. 2 x + 3 y = -4 2 x + 3 y = -4 (-2) - 4 x - 6 y = 8 Tekkisid vastandarvud. 5 x + 6 y = -7 5 x + 6 y = -7 5 x + 6 y = -7 2. Liidame võrrandid. Edasi toimime nagu kirjalikus liitmises, kuna võrrandsüsteemis esines vastandarve, võime -6y ning 6y näiliselt maha tõmmata. - 4 x - 6 y = 8 5 x + 6 y = -7 x + 0 =1 Alles jääb x=1 3. Kuna meil on üks tundmatu nüüd teada, saame selle teada ka teise tundmatu. Selleks valime kummagi võrrandi võrrandsüsteemist. 2x+3y=-4 3y=-4-2x Asendame nüüd x-i tema väärtusega 3y=-4-2 3y=-6 y=-6 |:3 y=-2 x = 1 y = -2 Vastuseks on

Matemaatika
66 allalaadimist
thumbnail
3
docx

Lineaarvõrrandisüsteemid

Lineaarvõrrandisüsteemid Põhikoolis lahendatakse põhiliselt lineaarseid võrrandisüsteeme, aga ka mõningaid lihtsamaid ruutvõrrandisüsteeme. Lineaarvõrrandisüsteeme on mõistlik lahendada kas asendusvõttega või liitmisvõttega (jätame graafilise lahendusmeetodi tähelepanu alt välja). Eespool nimetatud kahest võttest tuleks võimaluse korral eelistada liitmisvõtet. Näide 1. Lahendame võrrandisüsteemi liitmisvõttega. Kui korrutame võrrandisüsteemi teist võrrandit (-2)-ga, siis saame võrrandisüsteemi . Kui nüüd süsteemis olevate võrrandite vastavad pooled liita, siis saame võrrandi, kus enam tundmatut x ei ole, -3y = -3, millest y = 1. Asendame saadud y väärtuse süsteemi esimese võrrandisse, siis saame, et 2x + 1 = 3, millest x = 1. Vastus. Lahend on (1; 1).

Matemaatika
35 allalaadimist
thumbnail
246
pdf

Funktsiooni graafik I õpik

a1 = a a0 = 1 a n  a n  am an © Allar Veelmaa 2014 5 10. klass Viljandi Täiskasvanute Gümnaasium LINEAAR- JA RUUTVÕRRANDI LAHENDAMINE 1) Lineaarvõrrandi ax + b = 0 lahendamine b Kui a ≠ 0, siis lahend on x   a Kui a = 0, siis on kaks võimalust: a) kui b = 0, siis võrrandi 0 · x = 0 lahendiks sobib iga arv. b) kui b ≠ 0, siis võrrandil 0 · x = b lahendeid ei ole. 2) Ruutvõrrandi ax2 + bx + c = 0 lahendamine: Kui a = 1, siis sellist võrrandit nimetatakse taandatud ruutvõrrandiks ja esitatakse kujul x2 + px + q = 0 ning see lahendatakse valemiga p p2

Matemaatika
79 allalaadimist
thumbnail
4
doc

Matemaatika mõisted

Hulknurga kaht mitte ühele tahule kuuluvat tippu ühendav lõik. 19. Diameeter ­ ringjoone keskpunkti läbiv lõik, mis ühendab ringjoone kaht punkti. Sfääri keskpunkti läbiv lõik, mis ühendab sfääri kaht punkti. 20. Diskriminant ­ avaldis, mis on ruutvõrrandi lahendivalemis juuremärgi all. 21. Eukleidese teoreem ­ täisnurkse kolmnurga kaateti ruut võrdub selle kaateti projektsiooni ja hüpotenuusi korrutisega : a2=fc ja b2=gc 22. Geomeetriline keskmine ­ ruutjuur kahe positiivse arvu korrutisest. 23. Harmooniline keskmine ­ kahe arvu a ja b kahekordse korrutise jagatis nende arvude summaga . 24. Hektar ­ pindalaühik 1ha = 10 000m2. 25. Hulkliige ­ üksliikmete summa . 26. Hulktahukas e. polüeeder ­ hulkadega piiratud geomeetriline keha. 27. Hüpotenuus ­ täisnurkse kolmnurga kõige pikem külg, mis paikneb täisnurga vastas. 28. Irratsionaalarv ­ reaalarv, mis pole ratsioonaalarv. 29

Matemaatika
146 allalaadimist
thumbnail
6
doc

Reaalarvud. Võrrandid

ax 2 + bx + c = a ( x - x1 )( x - x 2 ) , kus x1 ja x 2 on a b + a b = ab ( a+ b ) ruutvõrrandi ax + bx + c = 0 lahendid. 2 a- a = ( a) 2 - a = a ( a -1 ) 2.6 Võrrandid Lineaarvõrrand Murdvõrrand - võrrand, milles tundmatu ax + b = 0 esineb murru nimetajas. b Murru väärtus on null siis ja ainult siis, kui x = - , kui a 0 ; a murru lugeja on null ja nimetaja ei ole null. lahend puudub, kui a = 0 ja b 0 ;

Matemaatika
297 allalaadimist
thumbnail
43
pdf

Keskkooli lõpueksam (2008)

1. ÜLESANNE (5 punkti) Ülesannete tekstid 1 5x 1 I Antud on avaldis 2 , kus x 0 ja x . x 25 x 2 x 0 5 1) Lihtsustage see avaldis. 3 2) Arvutage avaldise väärtus, kui x 2 . Vastus andke täpsusega 10 2. 2 x 2 (9 x 2 x 0 ) 1 II Antud on avaldis , kus x 0 ja x . 1 3x 3 1) Lihtsustage see avaldis. 3 2) Arvutage avaldise väärtus, kui x 2 . Vastus andke täpsusega 10 3.

Algebra ja Analüütiline...
778 allalaadimist
thumbnail
85
pdf

Konspekt

.......................................................................... 9 2.3.5 Pakkumisfunktsioon ...................................................................................................... 10 2.4 Kasumifunktsioon lineaarse nõudlus- ja kulufunktsiooni korral ........................................... 12 2.5 Liitfunktsioon ......................................................................................................................... 14 3 Võrrandid ........................................................................................................................... 16 3.1 Lineaarsed võrrandid, tasuvusanalüüs .................................................................................. 16 3.2 Ruutvõrrandid ....................................................................................................................... 18 4 Protsent- ja finantsarvutused .................................................

Matemaatika ja statistika
559 allalaadimist
thumbnail
6
doc

Ruutvõrrandid

- b ± b 2 - 4ac 2 x1;2 = p p 2a x1;2 = - ± - - q 2 2 Kui ruutvõrrandis ax2 + bx + c = 0 kas b = 0 või c = 0, siis on tegemist mittetäieliku ruutvõrrandiga. Selliseid võrrandeid viisakas inimene ei lahenda eespool toodud lahendivalemiga, sest neid saab lihtsamalt lahendada. Näide 1. Lahendame võrrandid 1) 3x2 + 6x = 0, 2) 0,5x2 ­ 23 = 0, 3) ­3x2 = 0. 1) Võrrandi 3x2 + 6x = 0 lahendamisel toome x sulgude ette, siis saame x(3x + 6) = 0. Kahe arvu korrutis on null parajasti siis, kui vähemalt üks arvudest on null, seega kas x = 0 või 3x + 6 = 0, millest x = ­2. Vastus: x1 = 0, x2 = ­2. 2) Kui 0,5x2 ­ 23 = 0, siis 0,5x2 = 23, millest x2 = 46. Järelikult x1 = - 46 ja x 2 = 46 . 3) Seda tüüpi võrrandi lahenditeks on alati 0 ja 0.

Matemaatika
29 allalaadimist
thumbnail
14
pdf

Lineaarvõrrandi lahendamine. Ruutvõrrandi lahendamine

a Näide Lineaarvõrrandi 2 x 3 0 lahendiks on 3 x . 2 1 Lineaarvõrrandi x 0 lahendiks on 2 1/ 2 x 1 / 2. 1 algusesse eelmine slaid järgmine slaid esitluse lõpp Näited Näide x Lahendame võrrandi 1,5 . 5 Lahendus Läheme üle samaväärsele võrrandile, tuues paremal pool oleva lineaarliikme vastandmärgiga vasakule poole võrdusmärki: x 1,5 0. 5 Saadud lineaarvõrrandi lahendiks on 1,5 3/ 2 35 15 1 x 7 . 1/ 5 1/ 5 2 1 2 2

Matemaatika
64 allalaadimist
thumbnail
8
pdf

Kompleksarvud gümnaasiumiõpikus

on reaalarv a. Kui a = b = 0, siis siis saame tulemuseks arvu 0. KOMPLEKSARVU MÕISTE. TEHTED KOMPLEKSARVUDEGA Kaks kompleksarvu on omavahel võrdsed parajasti siis, kui nende reaalosad ja 1. Kompleksarvu mõiste imaginaarosad on vastavalt võrdsed: a + ib = c + id a = c ja b = d . Võrrandite lahendamine on sundinud matemaatikuid võtma kasutusele uusi arvuhulki. Näiteks võrrandil 8 + x = 3 ei ole naturaalarvulisi lahendeid

Matemaatika
16 allalaadimist
thumbnail
15
doc

Mõisted matemaatikas

Eratosthenese sõel ­ meetod algarvude leidmiseks. Selgitus : Kirjutame välja arvud 1-st n-ni: 1, 2, 3, 4, ..., n. Kriipsutame maha arvu 1, mis ei ole algarv. Edasi võtame arvu 2 ja kriipsutame maha kõik tema kordsed: 4, 6, 8 jne. Pärast seda on esimene allesjäänud arv 3. Kriipsutame maha kõik arvu 3 kordsed: 6, 9, 12 jne. Järgmine allesjäänud arv on 5, kriipsutame maha kõik arvu 5 kordsed jne. Kui oleme niiviisi kõik kordsed eemaldanud, jäävad järele parajasti kõik algarvud. Harilik murd näitab, mitmeks võrdseks osaks on tervik jaotatud ja mitu sellist osa on võetud. Harilikku murdu võib vaadata kui jagatist. Murru nimetaja ei saa võrduda nulliga. Harilik murd näitab osa suurust võrreldes tervikuga Hariliku murru põhiomadus seisneb selles, et hariliku murru väärtus ei muutu, kui korrutada või jagada murru lugejat ja nimetajat ühe ja sama nullist erineva arvuga. Hektar on mittesüsteemne pindalaühik. Tähis ha.

Matemaatika
63 allalaadimist
thumbnail
18
pdf

Lineaarsed võrrandi süsteemid

a1 x1 + a2 x2 + ... + an xn = b, (1) kus a1 , ... , an ja b on fikseeritud (antud) arvud ning x1 , ... , xn on tundmatud. http://www.hot.ee/habib/MindReader.htm Arvu b nimetatakse vaadeldava võrrandi vabaliikmeks, arve a1 , ... , an aga tema kordajateks. Näide Võrrandis 5 x + 3 y - 2 z = -4 on vabaliikmeks arv ­4, kordajateks arvud 5, 3 ja ­2 ning tundmatud on tähistatud tähtedega x, y ja z. Lineaarse võrrandi lahend Definitsioon Lineaarse võrrandi (1) lahendiks nimetatakse sellist tundmatute x1 , ... , xn väärtuste komplekti c1 , ... , cn , R, mis asendamisel võrrandi (1) vasakusse poolde muudavad selle samasuseks: a1 c1 + a2 c2 + ... + an cn b. Näide Võrrandi 5 x + 3 y - 2 z = -4 üheks lahendiks on x = 1, y = -1 ja z = 3, kuna antud tundmatute väärtuste asendamisel võrrandisse saame samasuse: 5·1 + 3 ·(-1) - 2 ·3 -4

Matemaatika
64 allalaadimist
thumbnail
81
pdf

Kõrgem matemaatika / lineaaralgebra

4. Permutatsiooni definitsioon. Inversiooni definitsioon. n-järku determinandi definitsioon. Determinandi põhiomadused 5. Maatriksi elemendi minor. Alamdeterminant. Determinandi arendus rea ja veeru järgi. Determinantide teooria põhivalem. 6. Regulaarse maatriksi mõiste. Pöördmaatriksi definitsioon ja elementide leidmise eeskiri. Pöördmaatriksi omadused. 7. Lineaarse võrrandisüsteemi definitsioon. Võrrandisüsteemi kordajad, vabaliikmed, lahend. Vasturääkiv, kooskõlaline, määratu süsteem. Süsteemi maatriks ja laiendatud maatriks. 8. Süsteemi lahendamine Crameri valemitega. Maatriksi minor. Maatriksi astak. Maatriksi ridade ja veergude elementaarteisendused. Maatriksi rea juhtelement, treppmaatriks. Treppmaatriksi astak. Kronecker-Capelli teoreem 9. Gaussi meetodi sisu. 10. Kompleksarvu mõiste, imaginaarühik, kompleksarvu reaalosa ja imaginaarosa, kompleksarvude võrdsus, kaaskompleksarv

Algebra I
198 allalaadimist
thumbnail
63
doc

Põhikooli matemaatika kordamine

b) (2y + 1)(5 ­ 2y)2 ­ (2y ­ 3)3 = 4 Lahendus: (2y + 1)(5 ­ 2y)2 ­ (2y ­ 3)3 = 4 (2y + 1)(25 ­ 20y + 4y2) ­ (8y3 ­ 3 . (2y)2 . 3 + 3 . 2y . 32 ­ 33) = 4; 50y ­ 40y2 + 8y3 + 25 ­ 20y + 4y2 ­ 8y3 + 36y2 ­ 54y + 27 ­ 4 = 0; ­ 24y + 48 = 0; ­ 24y = ­ 48 : 24 ; y = 2. Kontroll: Võrrandi vasak pool: (2 . 2 + 1)(5 ­ 2 . 2)2 ­ (2 . 2 ­ 3)3 = 5 . 12 ­ 13 = 4. Parem pool: 4 Võrrandi vasak pool on võrdne parema poolega. Vastus: y = 2 4. Lahenda võrrandisüsteem. u 4 v 5 uv 8u v 8 a) 2 5u 6 v 1 10uv 14u 15v 21 Lahendus: ; ; ; ; u ­ v ­ 4 = 0; u = 4 + v; ­ 4(4 + v) + 3v + 9 = 0; ­ 16 ­ 4v + 3v + 9 = 0; ­ v ­ 7 = 0; v = ­ 7; u = 4 ­ 7 = ­ 3; . Kontroll: Esimese võrrandi vasak pool: (­ 3 + 4)( ­ 7 + 5) = 1 . (­ 2) = ­ 2,

Matemaatika
91 allalaadimist
thumbnail
13
pdf

Majandusmatemaatika IIE eksami kordamisküsimused

.. , An ja b. Uue süsteemi leidmiseks tuleb süsteemi igas reas vasakul pool korrutada vastava järjekorranumbriga tundmatu veerumaatriks esimese tundmatu veerumaatriksiga, seejärel teisega jne. Paremale poole jääb vastava järjekorranumbriga tundmatu veerumaatriksi korrutis vabaliikmete veerumaatriksiga. Märkused. 1) Saame võrrandisüsteemi lahendid, kui projekteerime parema poole b veergude ruumi. 2) Kui parem pool b kuulub veergude ruumi, on Ax = b täpne lahend leitav Gaussi meetodiga. 3) TEOREEM: Normaalvõrrandisüsteemil ATA = ATb on ühene lahend, kui maatriksi A veerud on lineaarselt sõltumatud. 4) Gaussi teisenduste korral vähimruutude lahend muutub, see pole vähimruutude ülesandes lubatud. 4. Kumerad hulgad Def: Hulk QcR2 on kumer, kui kõikide punktipaaride x1,x2 jaoks kogu neid punkte ühendav sirglõik kuulub sellesse hulka. Teoreem: Kumerate hulkade Q1...Qk ühisosa on kumerhulk. Tõestus: =!!!! !

Majandusmatemaatika
623 allalaadimist
thumbnail
9
ppt

Võrrandisüsteemide koostamine tekstülesannete põhjal IV osa

t = a / x ( x - b)(t + c) = a Ülesanne 1 (3) Lahendus jätkub ... t = a / x ( x - b)(t + c) = a Lahendamiseks asendame teises võrrandis tundmatu t esimesest võrrandi abil avaldisega a / x: a ( x - b)( + c) = a x Avame vasakul pool sulud: a a ab x + xc - b - bc = a a + xc - - bc = a x x x ab cx - - bc = 0. x Korrutame viimase võrrandi läbi suurusega x 0 ja saame tulemuseks ruutvõrrandi x suhtes: cx 2 - bcx - ab = 0. Ülesanne 1 (4) Lahendus jätkub ... cx 2 - bcx - ab = 0.

Matemaatika
48 allalaadimist
thumbnail
24
rtf

Lineaaralgebra eksam

wk = (cosk + sink) 1 ja 2 määravad ühe ja sama nurga juhul, kui nad erinevad arvu 2 täisarvu kordse võrra. 1 - 2 = 2t; t Z => (1 - 2) / 2 Z (1 - 2) / 2 = (( + 2k1)/n - ( + 2k2)/n) / 2 = (k1 - k2) / n Z k1/n = q1 + r1/n; 0 <= r1 < n; k2/n = q2 + r2/n; 0 <= r2 < n (k1 - k2) / n = q1 - q2 + (r1 - r2)/n Z => (r1 - r2)/n Z <=> r1 - r2 = 0 <=> r1 = r2 w1 = w2 <=> k1 ja k2 annavad n-ga jagamisel sama jäägi. Erinevateks juurteks on parajasti w0, ..., wn-1 Igal nullist erineval kompleksarvul z = r(cos + isin) leidub parajasti n erinevat n-dat juurt. Need juured saadakse avaldisest z 1/n = r1/n(cos(( + 2k)/n) + isin(( + 2k)/n)) andes arvule k järjest väärtused 0, 1, ..., n-1 3. Korpuse defnitsioon. Skalaari mõiste. Korpuste näiteid. Korpuseks nimetatakse hulka K, kus on kaks tehet, + ja *, mis rahuldavad omadusi 1-9 Skalaariks nimetatakse mis tahes korpuse elemente. Korpuse näiteid: 1. Q, R, C 2

Lineaaralgebra
197 allalaadimist
thumbnail
8
doc

Matemaatika praktikumi töö

a-n = 1/an a0 = 1 a1 = a 2. Lihtsustamine Abivalemid (a+b)2 = a2+2ab+b2 (a-b)3 = a3-3a2b+3ab2-b3 (a-b)2 = a2-2ab+b2 a3+b3 = (a+b)(a2-ab+b2) a2-b2 = (a+b)(a-b) a3-b3 = (a-b)(a2+ab+b2) (a+b)3 = a3+a2b+ab2+b3 (b-a) = -(a-b) 3. Võrrandid ja võrrandisüsteemid Lineaarvõrrand Muutujaga liikmed ühele, vabaliikmed teisele poole. Näide: 2(x+2) + 3 = 5x -2 -> 2x + 4 + 3 = 5x ­ 1 -> -3x = -9|:(-3) -> x=3 Ruutvõrrand Erinevad lahendusvõtted: ax2 +bx+c=0 1) Klassikaline lahendivalem 2) Taandatud võrrandi lahendivalem x2+px+q=0 (ruutliikme kordaja peab olema a=1) 3) Viete'i teoreem

Matemaatika
23 allalaadimist
thumbnail
6
ppt

Joone võrrand

2 2 3 1,85 4 1,6 -2 Kahe joone lõikepunktide leidmine On antud kaks joont oma võrranditega F(x, y) = 0 ja G(x, y) = 0. Missugused on nende joonte lõikepunktide koordinaadid? Lahendus Joonte iga lõikepunkt asetseb nii ühel kui teisel joonel. Järelikult joonte lõikepunkti koordinaadid peavad rahuldama nii üht kui teist võrrandit. Seega lõikepunkti(de) koordinaadid saadakse, lahendades mõlemad antud võrrandid ühiselt (võrrandisüsteemina): F ( x, y ) = 0 G ( x, y ) = 0. Näide Leiame ringjoone ( x + 1) 2 + y 2 = 4 ja sirge y = 3x lõikepunktid. Lahendus Asendame ringoone võrrandisse muutuja y avaldisega 3x (sirge võrrandist) ja lahendame saadud ruutvõrrandi: 1 ( x + 1) + (3x) = 4 10 x + 2 x - 3 = 0 x = - (1 ± 31)

Kehaline Kasvatus
26 allalaadimist
thumbnail
53
ppt

Reaalarvud ( slaidid )

Reaalarvude hulk on kinnine liitmise, lahutamise, korrutamise ja nullist erineva arvuga jagamise suhtes. Ruutjuur mittenegatiivsest reaalarvust on reaalarv. Ülesannete lahendamisel on vaja teada tehetes osalevate liikmete nimetusi liidetav +liidetav = summa; vähendatav - lahutatav = vahe; tegur · tegur = korrutis; jagatav : jagaja = jagatis. NB! Lahutamine on liitmise pöördtehe ning jagamise on korrutamise pöördtehe. Tehete järjekord keerulisema avaldise väärtuse arvutamisel: 1)Kui avaldises esinevad ka sulud, siis sooritatakse kõigepealt sulgudes olevad tehted; 2)Korrutatakse ja jagatakse avaldises antud järjekorras; 3)Liidetakse ja lahutatakse avaldises antud järjekorras. arvud 0, 1, 2, 3, ... N: naturaalarvud negatiivsed arvud -1, -2,... 5 3 Z: täisarvud murrud ;- ;... 6 5

Matemaatika
63 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun