Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
Ega pea pole prügikast! Tõsta enda õppeedukust ja õpi targalt. Telli VIP ja lae alla päris inimeste tehtu õppematerjale LOE EDASI Sulge

Võimendi projekt - sarnased materjalid

võimendi, signaal, sisend, transistor, regulaator, müra, helitugevus, võimendus, väljundvõimsus, kondensaator, moonutus, kõlari, sagedusala, stereo, mikrofoni, transistorid, takisti, kanal, helipea, sagedustel, tunnusjoon, parameetrid, mahtuvus, astmes, sisendtakistus, toitepinge, väljundis, alas, sagedused, soovitav, alaldi, skeemil, korrektsioon
thumbnail
59
pdf

Analoogelektroonika lülitused

Teema 6. Analoogelektroonika lülitused M.Pikkovi ainekava ja konspekti järgsed allteemad (http://www.ttykk.edu.ee/aprogrammid/elektroonika_alused_MP.pdf, lk 60...85) - Transistor kui pidevatoimeline võimenduselement. - Võimendusaste üksiktransistoriga (bipolaartransistor ühise emitteriga ja väljatransistor ühise lättega lülituses). - Tööpunkt (ehk reziim) ja staatiline ning dünaamiline koormussirge. - Astmete aseskeemid. - Pingevõimendustegur ja sisendtakistus. - Järgurid, nende pingevõimendustegur ja sisendtakistus. - Ühise baasiga aste. - Astmetevaheline sidestus mitmeastmelises võimendis. - Tagasiside võimendites.

Elektroonika alused
76 allalaadimist
thumbnail
42
doc

Rakenduselektroonika konspekt

1.1.3. Ribavõimendi ............................................................................................... 4 1.1.4. Lairiba võimendi ........................................................................................... 4 1.3

Elektrotehnika
148 allalaadimist
thumbnail
33
docx

Elektriajamid

Jaan Reigo, Kristjan Ööpik EA06 Rakenduselektroonika Uudo Usai Võimendid 10.02.09 Võimendi on seade, mille abil toimub signaali amplituudi suurendamine sel määral, et signaalist piisaks võimendi väljundisse ühendatud tarbijale. See juures võimendamise käigus ei tohi signaal moonutuda. Võimendusprotsess toimub alati toiteallikate energia arvel, nii et võime vaadelda võimendit kui reguraatorit, mis juhib toiteallikate energijat tarbijatesse kooskõlas sisendsignaali muutustega. Võimendi sisendsignaaliks võib olla ükskõik milline elektriline signaal, milline on kasutamiseks liiga väikse amplituudiga. Näiteks mikrofon (1-

Rakenduselektroonika
81 allalaadimist
thumbnail
50
doc

Rakenduselekroonika

Rakenduselektroonika 1.1 Võimendid Võimenditeks nim seadmeid, mille abil toimub signaali amplituudi suurendamine, nii, et võimalikult säiluks signaali kuju. Joonis 1.1.1 Igal võimendil on alati 2 sisend klemmi millega ühendatakse signaali allikas ja 2 väljund klemmi millega ühendatakse see objekt millele antakse võimendatud signaal. Peale selle vajab võimendi ka toiteallikat, mille energia arvel toimub võimendus protsess. Võime vaadelda ka nii, et võimendi on regulator mis juhib toiteallika energiat tarbijasse kooskõlas signaali muutustega. Sõltuvalt sellest milliseid võimendus elemente kasutatakse on olemas erinevaid võimendeid. Elektriliste signaalide võimendamiseks kasutatakse: transistor võimendeid, elektronlamp võimendeid, magnet võimendeid ja eletrimasin võimendeid.

Rakenduselektroonika
128 allalaadimist
thumbnail
32
doc

Rakenduselektroonika

Rakenduselektroonika 1. Võimendid 1.1. Võimendite liigid ja neid iseloomustavad parameetrid Võimendiks nimetatakse seadet mille abil toimub signaali amplituudi suurendamine võimalikult väikeste signaali kuju moonutustega. E ­ + Usis Võimendi Uvälj Joon.1.1 Võimendil on alati kaks sisend-, kaks väljundklemmi ja temaga peab olema ühendatud alati energiaallikaks olev alalispinge allikas (joon.1.1). Sisendklemmidega ühendatakse signaaliallikas mille signaal vajab võimendamist. Väljundklemmidega aga ühendatakse see tarbija, millele antakse võimendatud signaal, milleks võib olla kas valjuhääldi, mingi relee mähis, mingi täiturmehhanismi juhtmähis jne. Nimetatud

Elektriahelad ja elektroonika...
44 allalaadimist
thumbnail
2
doc

Rakendus elektroonika(2)spikk

Operatsioon võimendid: Operatsioon võimendid on integraalselt teostatud universaalsed võimendi väljundtakistus ongi reaalselt mõne ringis, seega 100 korda väiksem kui Op võimendi võimenduselemendid, mida võib kasutada väga mitmeti, sõltuvalt lisatud elementidest. Operatsioon takistus. Väljundtakistuse vähenemine on seda tugevam, mida tugevam on kasutatav tagasiside. võimendil on kaks väljundit, üks väljund ja teda toidetakse kahe polaarse sümeetrilise pingega (+, - maa Inventeerivvõimendi: suhtes). Plussiga tähistatud sisendit loetakse mitte inventeerivaks sisendiks ja sinna antav signaal tekkitab väljundis samafaasilise signaali

Rakenduselektroonika
41 allalaadimist
thumbnail
81
doc

Elektroonika aluste õppematerjal

.........................................................................................................................................................24 4. TRANSISTORID Bipolar JunctioTransistor (BJT).......................................................................................................28 4.1.Transistori ehitus.................................................................................................................................................... 28 4.2 Võimendi sisend ja väljundtakistus......................................................................................................................... 28 4.3. Transistori tööpõhimõte..........................................................................................................................................29 4.4. Transistori kolm lülitust. ........................................................................................................................................

Elektroonika alused
377 allalaadimist
thumbnail
1
doc

Rakendus elektroonika(1)spikk

Operatsioon võimendid: Operatsioon võimendid on integraalselt teostatud ahela muutmisega võimendus tegurit, siis nihkub võimendi ülemine sagedus piir universaalsed võimenduselemendid, mida võib kasutada väga mitmeti, sõltuvalt lisatud madalamatele sagedustele. Juhul kui saadud ülemisest sagedus piirist ei piisa tuleb võtta elementidest. Operatsioon võimendil on kaks sisendit,üksväljund ja teda toidetakse kahe kasutusele suurema transiitsagedusega Op võimendi. Op võimendite rakendusi: Oma polaarse sümeetrilise pingega (+,-maa suhtes)

Rakenduselektroonika
32 allalaadimist
thumbnail
114
doc

Elektroonika alused

........................................................................................................................................... 35 ........................................................................................................................................... 38 ................................................................................................................................................ 80 Mitmeastmelise võimendi korral...................................................................83 1. POOLJUHTIDE OMADUSI 1.1.Üldist Pooljuhtseadised ja nende kasutamine oli eelmise sajandi tehnilise revolutsiooni peasüüdlaseks. Nendeta ei oleks personaalarvuteid, mobiiltelefone ega palju muud sellist, mis tundub meile igapäevasena. Võime julgesti öelda , et ilma pooljuhtseadisteta ei oleks praegust infoühiskonda. Samal ajal tuleb meeles pidada , et pooljuhttehnika on poole sajandi jooksul läbinud

Elektriahelad ja elektroonika...
144 allalaadimist
thumbnail
32
docx

Elektroonika piletid

korral punakaskollasest kollakasroheliseni. Valgusdioode valmistatakse peamiselt galliumarseniid-fosfiidist. Valguse lainepikkuse ala on küllaltki piiratud ning sõltub materjalist. Suurima valgusliku kasuteguriga on infrapuna-valgusdiood. Valguse paremaks suunamiseks on dioodil enamasti sfääriline või paraboolne polümeermaterjalist lääts ning vahel ka nõgus valgust peegeldav pind. Valgustugevus kasvab alates voolust 1...2mA enam-vähem võrdeliselt pärivooluga. 2. Võimendi põhiparameetid Võimendi on elektroonikalülitus või seadis, mis teostab võimendamist. -Diferentssignaali võimendustegur: väljundpinge ja selle esile kutsunud diferentsiaalpinge suhe. Antakse 0-sagedusel ja nimitingimustel. Diferentssignaali võimendus kD vastab OV võimendusele ilma tagasisideta. OV väljundpinge on praktiliselt kogu alas lineaarselt sõltuv diferenspingest. -Ühissignaali nõrgendustegur- võimendusteguri ja ühispinge ülekandeteguri suhe.

Elektroonika
76 allalaadimist
thumbnail
197
pdf

Elektroonika

3. Pooljuhtseadised (dioodid, bipolaartransistorid, väljatransistorid, türistorid)............................... 23 4. Optoelektroonika elemendid, infoesitusseadmed.......................................................................... 42 5. Analoogelektroonika lülitused....................................................................................................... 60 5.1. Elektrisignaali võimendamine. Transistor kui pidevatoimeline võimenduselement.............. 60 5.2. Võimendusastmed bipolaartransistori baasil.......................................................................... 62 5.3. Võimendusastmed väljatransistoride baasil............................................................................ 73 5.4. Tagasiside võimendites.......................................................

Elektroonika ja IT
74 allalaadimist
thumbnail
6
doc

Füüsika harjutusi eksamiks

Kõigil juhtudel peaksite eksamil teadma ka tööpõhimõtet ja vastavaid skeeme (dioodil, Zener dioodil, RC,RL ja RCL ahelatel). Signaali käigu skitseerimise all on mõeldud seda, et peaks joonistama signaali kuju (näiteks siinuselise signaali mõne perioodiga) ja juurde kirjutama sageduse või perioodi ning amplituudi. 1. Skitseerige signaali käik RC madalpääsfiltris 16,7 kΩ takistiga ja 120 nF kondensaatoriga, kui siinuseline signaal on 10 V amplituudiga ja sagedus on 7,96 Hz, 137,8 Hz või 967 Hz. Milline on 7,96 Hz ja 796 Hz signaali korral ahelat läbiva voolu amplituud? (ω0 = 500 s-1 e. 79,6 Hz ja signaal väljundis on vastavalt Uv = 0,995Us, 0,5Us ja 0,0995Us ehk ligikaudu sama, 2 korda väiksem või 0,1 esialgsest signaalist. Voolu amplituud on 0,06 ja 0,6 mA) 2. Skitseerige antud skeemi korral Thevenini ja Nortoni ekvivalentskeemid ja tuletage neid iseloomustavad parameetrid

Füüsika
7 allalaadimist
thumbnail
42
doc

Raadiovastuvõtuseadmed

juhtimine VV sisendlülitusse. 2. VV sisendlülitused ehk sisendvooluringid Nende ülesanne on sidestada VV antenn VV esimese astmega nii, et antennist kanduks sisendile võimalikult suur osa soovitava sagedusega KS- energiast. Samal ajal peab sisendlülitus............ 3. Detektor ehk demodulaator Eraldab moduleeritud või manipuleeritud raadiosageduslikust kandevsagedusest ülekantav infot sisaldav kasulik signaal. Nt: raadioringhäälinguks helisignaal, TV-signaali puhul nii pildi. Kui ka helisignaal, milleks kasutatakse kahte eraldi detektorit. Detektori tööpõhimõtte lülitus sõltub moduleerimise liigist (AM, FM, SSB, IM). *Ainult antennist ja detektorist koosnev vastuvõtja toimib täielikult antennist saadava KS-energia arvel, mistõttu tundlikkus ja tarbijale ülekantav väljundvõimsus on väga väikesed, sõltudes oluliselt:

Raadiovastuvõtuseadmed
49 allalaadimist
thumbnail
9
docx

Elektroonika II KT

diferentssisendiga ja kahepoolse toitega alalisvooluvõimenditena. Sisendsignaal rakendatakse transistorite baasidele. Väljundsignaal Uv on samas faasis sisendpingega Us1 ja vastasfaasis sisendpingega Us2. Sisendpingete vahet Usd = Us1 - Us2 nimetatakse diferentspingeks, aritmeetilist keskmist aga ühispingeks. Väljundsignaal Uv = Ku Usd + Kü Usü Oluline on, et Ku oleks suur ja Kü oleks väike. Põhilised tunnussuurused Võimendustegur ehk diferentssignaali võimendus Ku on väljundpinge ja selle esile kutsunud diferentspinge suhe. Diferentssignaali võimendus Ku vastab võimendusele ilma tagasisideta. Ku = (10 ... 3000) 103 Väljundpinge on praktiliselt kogu alas (UVmin...UVmax) lineaarselt sõltuv diferentspingest. Kui maksimaalne pinge on saavutatud, siis väljundpinge enam ei kasva ja jääb (1...5) V madalamaks kui toitepinge. Näiteks toitepingel Ut = ± 15 V, Uvmax 12 V.

Elektrimasinad
21 allalaadimist
thumbnail
32
doc

Skeemitehnika konspekt

8 6,31 2,51 70 10000000 3162,3 9 7,94 2,82 80 100000000 10000 90 109 31623 100 1010 100000 Ül: Võimsusvõimendi võimendus KP = 33dB. Sisendvõimsus PS = 20mW. Arvuta võimsusvõimendi väljundvõimsus PV. P P K PdB  10 lg V  33  10 lg V  : 10 PS 20 PV P 3,3  lg  103,3  V  PV  20 103,3  40W 20 20 Ajakonstant. U C E UC C IL 

Telekommunikatsionni alused
45 allalaadimist
thumbnail
36
docx

Raadiosaatjad ja -vastuvõtjad - Laboratoorne töö.

-Δf kHz 6,1 kHz 8,8 kHz 11,8 kHz 13,8 kHz 20log(U2/U1) 37 dB 49 dB 66,8 dB AVR Järeldus Mõõtetulemusi on vähe, kuna valisime vastuvõtja sagedused liiga suurte vahedega ja seepärast tuli AVR vastu.  AVR (Automaatne võimenduse reguleerimine ) – AVR kasutatakse selleks, et vältida võimenduselementide ülekoormust väga tugeva sisendsignaali tõttu ja ühtlasi hoida helitugevus väljundis sõltumatuna VV sisendsignaali tugevusest. Laboratoorne töö aines: Raadiosaatjad ja -vastuvõtjad Nr. 4 Õpilase ees- ja perekonnanimi:  Nimi Õpperühm: SA-12 Töörüh TPT Töö 02.04.201 m: tehtud: 5 Aruanne 16.04.2015 Hinne: Õpetaja: Jaan Kuus esitatud: Töö nimetus: väljundvõimsus bla bla bla

Raadiosaatjad ja -vastuvõtjad
6 allalaadimist
thumbnail
17
docx

Elektroonika alused Konspekt

Kondensaator C = Q/P ; [F] 1 - dielektrik 2 - metall plaat S­ U ­ Pinge d- Film Capacitor (Kile kondendsaator) Isolatsiooni kile paksus 2-20 mikromeetrit, Parameeter Polüester Polükarbonaat Polüstüeer Mahtuvus 100pF - 22nF 100pF - 68µF 10pF ­ 0,5µF Sagedus 1MHz 1MHz 10MHz Tolerants ±5-20% ±5-10% ±1-5%

Elektroonika alused
53 allalaadimist
thumbnail
30
pdf

Teema 5, Elektro- ja süsteemtehnika põhimõisted I.osa

osaliselt alaldatud, suurte moonutustega väljundpinge, mis on rikas harmooniliste poolest. Joonis 5.5. Diood-poolperioodalaldi (ebasümmeetrilise mitteresistiivse lülituselemendi) mittelineaarne ülekandekarakteristik [1]. Joonis 5.6. A-klassi reziimis töötava võimendi ülekandekarakteristik [1]. Võimendi (lampvõimendusaste), mille ülekandekarakteristikut näeme joonisel 5.6, töötab väikese signaali korral lineaarses reziimis, ent muutub signaali amplituudi kasvades mittelineaarseks (algab väljundsignaali piiramine). Elektroonika alused. Teema 5 ­ Mõned elektrotehnika ja süsteemitehnika põhimõisted. Passiivsed resistiivsed vooluahelad. SDER 3. loeng 10.02

Elektroonika alused
61 allalaadimist
thumbnail
46
doc

Elektroonika Alused

Kondekast ja takistist koosnev madalpääsfilter. Skeem, ülekandeteguri tuletuskäik, sagedustunnusjoone graafik. Kondekst ja takistist koosnev kõrgpääsfilter, skeem, ülekandeteguri tuletuskäik, sagedustunnusjooned. Sagedustunnusjoone esitus logaritmilises skaalas, detsibell. Selline filter kannab üle madalad sagedused ja kõrvaldab kõrged sagedused. Kõrgetel sagedustel lühistatakse kondensaator. Kondensaatori takistus on seda suurem, mida madalama sagedusega on vool. Kui on tegemist alalisvooluga, siis vool läbi takisti ja RK ( kondensaatori takistus) on suur. Kui aga kõrgsagedusvool, siis enamik voolu läbi kondensaatori ja RK on suur, et vool suudaks kondensaatori plaate korralikult laadida. 1 j X(täpp)C = =- jC C (täpp) tähistab tuletist aja järgi. Ohmi seadus: v(täpp)s = vK + vC , kus vK = I*R ja vC = -j/C

Elektroonika alused
149 allalaadimist
thumbnail
32
docx

Elektroonika aluste eksami küsimused ja vastused

Kondensaatorid jaotatakse püsi- ja muutkondensaatoriteks. Püsikondensaator on kindla mahtuvusega seadis. Ehituse järgi jagunevad püsikondensaatorid kile-, keraamika- ja elektrolüütkondensaatoriteks. Kilekondensaatorites kasutatakse dielektrikuks 1…3 μm paksust sünteeskilet. Levinud sünteesmaterjalid on polüester (KT), polükarbonaat (KC), polüpropeen (KP) ja polüstüreen (KS). Metallpolüesterkondensaatoreid toodetakse alalistööpingele kuni 1 kV ehk sama kondensaator talub kuni 650 V efektiivväärtusega siinuselist vahelduvpinget. Metallpolüesterkondensaatorid on pikaealised ja taluvad kõrget keskkonna temperatuuri, töötemperatuur jääb vahemikku -50…100 °C. Keraamikakondensaatorid – keraamilise dielektriku järgi jaotatakse keraamikakondesaatorid kõrgsageduslikeks ja senjettkondensaatoriteks. Kõrgsageduskeraamika dielektriline läbitavus 3…550. Kõrgsageduskeraamikal on väga väikesed kaod

Elektriahelad ja elektroonika...
67 allalaadimist
thumbnail
2
doc

Rakendus elektroonika(3)spikk

Impulss tehnika alused Impulss tehnikaks nimetatakse seda elektroonika osa, mis tegeleb impulsiliste saame 0tasemelise piiramise ülalt. Kui aga meil on dioodiga järjestiku pingeallikas, siis ei avane diood signaalide genereerimise, formeerimise ja võimendamisega. Impulsilisi signalle kasutatakse digitaal mitte väikeselisel positiivsel pingel vaid alles siis kui sisend pinge saab pingeallika pingest tehnikas, ning ka signaalide edastamisel, kui sinuselist signaali iseloomustatakse kolme parameetriga, positiivsemaks. Seega määrab kasutatav pingeallikas piiramis nivoo. Täpsemalt tuleb arvestada ka need on :Amplituud, Sagedus, Algfaas. Siis impulsiliste signaalide korral on vajalikke parameetreid dioodi päripinge langu, sest diood ei avane mitte 0sel pingel, vaid siis kui pinge on ületanud 0,5V. märksa rohkem

Rakenduselektroonika
38 allalaadimist
thumbnail
23
doc

Elektroonika alused (konspekt)

töös mitmeid olulisi erinevusi: 1. Väljundpinge muutumine on märksa väiksem kui aktiivtakistusliku koormuse korral. See tähendab, et väheneb pulsatsioon. Seejuures pulsatsiooni vähenemise määr sõltub kondensaatori mahtuvusest ja koormustakistusest, kui kondensaatori mahtuvus on suurem väheneb pulsatsioon enam ja sama tulemuse annab ka suurem koormustakistus. Taoliselt lülitatud kondensaatorit võib vaadelda ka silufiltrina. 2. Alaldi lülitamis hetkel on kondensaator tühi ja see on sama väärne lühisega väljundis. Läbi dioodi tekib väga tugev laadimisvoolu impulss, see võib kahjustada dioodi, kuna voolu piirab ainult alaldi sisetakistus, mis koosneb dioodi pärisuuna takistusest ja trafomähiste takistusest. Dioodid on arvestatud lühiaegsele ülekoormusele, kuid alaldite projekteerimisel kontrollitakse, kas valitud diood talub laadimisvoolu 3

Elektroonika
235 allalaadimist
thumbnail
11
doc

Elektroonika kordamisküsimused

...................................................................................................................1 1.1.Elektroonika ajaloo põhietapid.............................................................................1 1.2.Mis on elektronlamp.............................................................................................2 1.3.Elektronkiiretoru.................................................................................................. 2 1.4.Mis on võimendi...................................................................................................2 1.5.Analoog ­ ja digitaalelektroonika erinevus..........................................................3 1.6.Elektroonika passiivkomponendid....................................................................... 3 1.7.Dioodi ehitus ja funktsioneerimine...................................................................... 4 1.8.Stabilitron ja selle kasutamine..........................

Elektroonika
403 allalaadimist
thumbnail
10
doc

Mõõtmised

tuleneb dioodi volt-amperkarakteristikust Seetõttu ei saa sellist detektorit kasutada väikeste pingete (kuni 1V) mõõtmisel Ka siis kui sisendsignaal sisaldab alalis-komponenti võib mõõtetulemus olla vale Alaliskomponendi mõju kõrvaldamiseks saab kasutada tippväärtuse detektori veidi keerulisemat lülitust 2 Eelmisel joonisel kujutatud lülituses kondensaator Ck tõkestab sisendsignaali alaliskomponendi Kasutatakse ka tippväärtuse detektorit, mis sisaldab endas praktiliselt kahte detektorit: ühte positiivsete ja teist negatiivsete tippväärtuste mõõtmiseks Mõlemad toodud tippväärtuse detektorid mõõdavad pinge täisulatust, mitte ühe-poolset tippväärtust Silumisfiltri ajakonstant t = RC peab olema märgatavalt suurem vahelduvsignaali suurimast perioodist T

Telekommunikatsionni alused
18 allalaadimist
thumbnail
3
doc

Test 2. kokkuvõte (lubatud spikker)

2. Erinevate pidevatoimeliste väärtuste vastuvõtt (signaali parameetrite hindamine); 3.Võnkumiste vastuvõtt (filtreerimine). Olulisteks lähteandmeteks optimaalsete vastuvõtjate sünteesil see, et eeldatakse teada olevaks kodeerimise viis, modulatsioon, kasutatavate signaalide klass. Loetakse ka teadaolevaks osa või kõik signaali parameetrid (amplituud, sagedus, faas, impulsi kestvus, aprioorsed tõenäosused ühe või teise sündmuse esinemiseks). Signaal loetakse täpselt teadaolevaks, kui ainsaks tundmatuks võnkumise parameetriks on teade signaali olemasolust. Optimaalse vastuvõtja sünteesil eeldatakse muidugi ka aprioorset teavet vastuvõtule kaasnevate mürade, häirete iseloomu kohta. Tundmatute parameetritega signaaliks loetakse signaali, kus lisaks tema teadaolemisele on tundmatud veel mõned signaali parameetrid (sagedus näiteks)

Kõrgsageduslik...
39 allalaadimist
thumbnail
54
pdf

praktiline elektroonika 1-2: Analoogskeemid

Praktiline elektroonika I Analoogskeemid Veljo Sinivee [email protected] Kondensaatorid · Kondensaator on nagu veeanum ­ kogub elektrone.Erinevalt veepurgist on tühjas kondes alati elektrone · Juhib vahelduvvoolu, alalispingele lõpmatu takistus (v.a. laadimisel). Miks? · Polaarsed, mittepolaarsed ja unipolaarsed konded · Max. pinge, töötemperatuur, ehitusest tulenevad omadused (induktiivsus, lekkevool jne). · Ühik ­ Farad (Maa mahtuvus ca 700 nF). Skeemil sümbol C · Kasutatakse pinge silumiseks toiteallikates (vihmaveetünn) ; viidete tekitamiseks; filtrites;

Elektriahelad ja elektroonika...
51 allalaadimist
thumbnail
10
doc

Referaat "Heli edastus ja taasesitus"

Juhendaja: Mihhail Lavrov Tallinna Tehnika Ülikool XXXX21 999999XXXX silveeer Sisukord Sissejuhatus 3 Helivõimendi ajalugu 4 Võimendi disain ja parameetrid 5 Edasised arengud võimendi disainis 6 Kõlari ajalugu 7 Kõlari ehitus 8 Kasutatud kirjandus 10 Sissejuhatus Heliedastus elektroonika abil koosneb mitmest järgust, käesolevas referaadis keskendun helivõimendile ja kõlari elemendile(e. valjuhääldile). Helivõimendi on elektrooniline võimendi, mis võimendab väikese võimsusega

Elektroonika
51 allalaadimist
thumbnail
3
doc

Elektroonika eksamiks

Pilet 1. Pilet 3. 1. Valgusdioodid 1. türistori volt-amper karakteristik 2. Võimendi põhiparameetid 2. mis asi on nullinihepinge OV baasil? 3. RC-generaator (Wien i sild + OV) 3. T-triger 4. TTL-Schottky loogika elemendid 4. demutlipleksor 5. RS-triger 5

Elektroonika
512 allalaadimist
thumbnail
14
doc

„Raadiotehnika alused”

omadustega, ja F(2)- kihist ( 220 ­ 320 km ); muul ajal on ainult F(2) kiht, mis on põhiline LL peegeldaja. ionosfäär Mida väiksema nurga all välja kiiratakse seda kaugemale laine levib. Väiksema nurga all kiiratud laine jõuab kaugemale kui keskmise nurga all kiiratud laine. Suurema kui kriitilise nurga all kiiratud laine läheb avakosmosesse. 5. Mürade ja Doppleri efekti mõju raadiolainete levile. Müra on heli, mis tekib heliallika korrapäratul võnkumisel. Signaali levi mõjutavad looduslikud ja tööstuslikud mürad. Atmosfääris on mürad tingitud staatilistest laengutest ja välgust. Doppleri effekt on saatja näiv sageduse muutumine kui saatja või vv liigub. Efekti mõju on suurem mobiilse side sagedustel 300-3000MHz ning digitaalmodulatsiooniga sidesüsteemide korral.

Raadiotehnika
65 allalaadimist
thumbnail
6
pdf

Transistorid

Nad on juhitavad kui väljatransid (hea: suur sisendtakistus), koormuse poolelt aga käituvad kui bipolaartransid. Rakendatakse ntx. fotoaparaatides välgu lülitamise juures. Kõik bipolaartransid on kas NPN või PNP tüüpi. Skeemitingmärgil on NPN transi emitteri nool transist väljapoole, PNP puhul aga vastupidi. Tehnoloogilstel põhjustel on NPN transid rohkem levinud (eriti mikroskeemide sees). Tüüp PNP või NPN määrab, mis pidi peavad pinged transistorile minema. NPN transistor tahab emmitterile miinust ja kollektorile plussi. Transi sulgemiseks (et e- >k voolu ei liiguks) peab baasile andma kas sama pinge mis emmitterile või sellest veidi negatiivsema. Avamiseks tuleb baasile anda emmitterist positiivsem pinge. PNP transi puhul on kõik täpselt vastupidi. Pinge tuleb anda muidugi mitte otse,sest siis põleb trans heleda leegiga, vaid eeltakisti kaudu. See tähendabki juhtimist VOOLUGA.

Elektrimaterjalid
27 allalaadimist
thumbnail
5
doc

Spikker elektroonika eksamiks

7.Bipolaartransistor kui lüliti. Bipolaartransistoride germaaniumist või ränist pooljuhtstruktuur koosneb kolmest p- ja n-juhtivustüübiga kihist (pnp- või npn-struktuur) ning kahest nendevahelisest pn-siirdest. Ühe pn-siirde (näit emittersiirde) voolu muutumine põhjustab teise siirde (kollektorsiirde) takistuse muutumise. Bipolaartransistori tööks on vajalik erimärgiliste laengukandjate (neg elektronide ja pos aukude) olemasolu pooljuhis. 8.MOP-transistor. Metall-Oksiid-Pooljuht transistor. n ja p-kanaliga. 9.Pooljuhtdiood. Harilikult ühe pn-siirde või metall-pooljuhtkontaktiga ja kahe väljaviiguga pooljuhtseadis elektriliste suuruste muundamiseks. On töökindlad, kiiretoimelised, väikesed ja kerged ning tarbivad vähe võimsust. Kasut. Vahelduvvoolu alandamiseks, sageduse muundamiseks jne. 10.Dioodloogika. Võimendust teha ei saa, suuri pingeid sisse lasta pole ka mõtet. Dioodloogika realiseerib fakti, et

Elektroonika
464 allalaadimist
thumbnail
10
doc

Elektrotehnika kordamisküsimused ja vastused

I = U / R (Pinge kutsub esile elektrivoolu) 7. Nimeta seadmeid ja protsesse, mis toimivad ainult alalisvooluga? Käekell, arvuti, kalkulaator, taskulamp, alalisvoolumootorid, alalisvoolugeneraator, hõõglambid, termotakistid, operatsioonvõimendi, elektriring, troll, tramm, elektrokeemia ja galvaanika elemendid. Toiteks vajavad alalisvooluallikaid galvaanielemendid, akud ning alaldid. 8. Nimeta seadmeid ja protsesse, mis toimivad ainult vahelduvvooluga? Trafo, kondensaator, vahelduvvoolugeneraator, vahelduvvoolumootor, asünkroonmootor, elektritööriistad, raadio ­ ja televisioonitehnika, föön, veekeetja, videomakk. (vahelduvvool on perioodiliselt oma suurust ning suunda muutev vool) 9. Nimeta seadmeid ja protsesse, mis toimivad nii alalisvoolu kui ka vahelduvvooluga? Elektrimootor, lambipirn, poolperioodalaldi, täisperioodalaldi. 10. Kas elektriahela arvutustulemused sõltuvad sellest, kas arvutaja arvab voolu

Elektrotehnika
313 allalaadimist
thumbnail
240
pdf

Elektriajamite elektroonsed susteemid

........... 237 Jõupooljuhtmuundurite ja elektriajamite tootjad ....................................................................237 Komponentide tootjad ...........................................................................................................237 Aineregister................................................................................................................. 238 5 Tähised Sümbolid A võimendi q töötsükkel B andur R takistus kondensaator r raadius D digitaalseade S lipistus G generaator s operaator L reaktor, drossel T periood, ajakonstant M mootor t aeg R takisti U pinge S lüliti v kiirus

Elektrivarustus
90 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun