Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

Uurimistöö laserid ja nende kasutamine - sarnased materjalid

laser, elektron, laserid, gaas, gould, aatom, rubiin, patendi, optika, holograafia, footon, kiirte, sealsamas, hologramm, revolutsioon, peegel, lainepikkus, raal, resonaator, kül, alas, tehnoloogia, röntgen, koherentne, pumpamine, rubiinlaser, aatomites, valguslaine, laseriga, radar, objektilt, grammofon, kirurgias, lasergrammofon, stimuleeritud, stars
thumbnail
24
docx

Laser

rakendusi. Laser on üpris eriliste omadustega uut liiki valgusallikas. Tema poolt kiiratud valgus võib olla erakordselt intensiivne, äärmiselt kõrge koherentsuse astmega ning koondunud väga kitsasse lainepikkuste vahemikku, pealegi võib valgus allikast väljuda kitsa paralleelkiirtekimbuna. Laseri väga intensiivne, rangelt koherentne ja kitsa paralleelkiirtekimbuna leviv kiirgus on toonud talle väga palju kasutusalasid. Laser ei ole mitte üksnes energiarikas ja suure intensiivsusega, vaid ühendab lisaks sellele mõningaid valguslainete jooned raadiolainete mõningate omadustega. Laser on abreviatuur. Sõna laser on lühend inglisekeelseist sõnadest "Light Amplification by Stimulated Emission of Radiation" (valguse võimendamine stimuleeritud kiirguse varal). Laser kui optiline kvantgeneraator (kvantelektroonika põhiseade) on valguse stimuleeritud kiirgumisel rajanev koherentvalguse generaator,

Füüsika
56 allalaadimist
thumbnail
10
doc

Referaat Laserist

Laser on üpris eriliste omadustega uut liiki valgusallikas. Tema poolt kiiratud valgus võib olla erakordselt intensiivne, äärmiselt kõrge koherentsuse astmega ning koondunud väga kitsasse lainepikkuste vahemikku, pealegi võib valgus allikast väljuda kitsa paralleelkiirtekimbuna. Laseri väga intensiivne, rangelt koherentne ja kitsa paralleelkiirtekimbuna leviv kiirgus on toonud talle väga palju kasutusalasid. Laser ei ole mitte üksnes energiarikas ja suure intensiivsusega, vaid ühendab lisaks sellele mõningaid valguslainete jooned raadiolainete mõningate omadustega. Laser on abreviatuur. Sõna laser on lühend inglisekeelseist sõnadest "Light Amplification by Stimulated Emission of Radiation" (valguse võimendamine stimuleeritud kiirguse varal). Laser kui optiline kvantgeneraator (kvantelektroonika põhiseade) on valguse stimuleeritud kiirgumisel

Füüsika
41 allalaadimist
thumbnail
5
doc

Laserite tööpõhimõte ja ehitus

Laser Sõna laser on lühend inglisekeelseist sõnadest "Light Amplification by Stimulated Emission of Radiation" (valguse võimendamine stimuleeritud kiirguse varal). Laser kui optiline kvantgeneraator (kvantelektroonika põhiseade) on valguse stimuleeritud kiirgumisel rajanev koherentvalguse generaator, harvemini valguse võimendi. Valguse all mõistetakse sel juhul lühilainelist elektromagnetkiirgust, mille lainepikkus on suurem , kui 1mm. Laserite töö baseerub pööratud jaotuse ja optilise pumpamise nime kandvatel kvantoptilistel protsessidel. Laser on üpris eriliste omadustega uut liiki valgusallikas. Tema poolt kiiratud valgus võib olla

Füüsika
45 allalaadimist
thumbnail
13
pdf

Laserite ajalugu

GUSTAV ADOLFI GÜMNAASIUM Randolf Otsepp LASERID Referaat Juhendaja: Jana Paju Tallinn 2010 Sisukord SISSEJUHATUS ..........................................................................................3 LASERITE AJALUGU.............................................................................. ........4 Definitsioon.................................................................................... ......4 Lühidalt laserite ajaloost........................

Füüsika
23 allalaadimist
thumbnail
1
docx

Laseri leiutamine

Meie arvutite CD lugejates ja ka CD kirjutajates, mis peaks enamustes arvutites ka olemas olema, kasutatakse lasertehnoloogiat. Samuti on too sama tehnoloogai kasutusel muudes meile tutavates ja igapäevastes asjades nagu näiteks: muusikakeskused, CD mängijad, laserprinterid ja skännerid. Iseasi on ainult see kas inimene ise ka on teadlik sellest, et nendes igapäevastes vahendites on lasertehnoloogai kasutusel. Käesolevas uurimistöös on lähema vaatluse all laserid, koos nende kasutamise, tööpõhimõtte, ajaloo ja erinevate liikidega. Uurimistöö eesmärgiks on leida informatsiooni laserite ajaloo kohta, (kes selle leiutas ja millal?)mis põhimõttel töötab laser ning millistes valdkondades ja kuidas on võimalik seda kasutada. Uurimistöö hüpoteesiks on, et lasertehnoloogia on küllaltki uus asi ja et ei ole olemas eriti palju laseri liike. Uurimistöös on kasutatud allikmaterjalidena Tolansky S raamatut Revolutsioon optikas,

Füüsika
6 allalaadimist
thumbnail
13
docx

Laserid

Ülekantud tähenduses mõistetakse valguse all ka teadmisi või tarkust. [1] Tänapäeval puutume laseritega kokku üpris tihti. Lasereid leidub nii meie arvutite CD-lugejates, kui ka CD-kirjutajates. Samuti kasutatakse lasertehnoloogiat nii meditsiinis, ehituses, tööstuses ja paljus muus, millest meil ei pruugi õrna aimdustki olla. Käesolevas uurimistöös võtangi vaatluse alla just erinevad laseritüübid, laserite ajaloo ja kasutusvaldkonnad. 2 LASERIST ÜLDISELT Laser ehk valguskvantgeneraator ehk optiline kvantgeneraator on indutseeritud kiirguse omadustel põhinev seade, mis tekitab monokromaatilist elektromagnetkiirgust spektri optilises, kas siis ultravioletses, nähtavas või infrapunases osas. Sõna "laser" tuleb ingliskeelsest fraasist light amplification by stimulated emission of radiation, mis sõna-sõnalt tõlkides tähendab valguse võimendamist stimuleeritud kiirguse kaudu [2].

Füüsika
15 allalaadimist
thumbnail
3
doc

Laser

aastal ameeriklase Maimani poolt. Laser on üpris eriliste omadustega valgusallikas. Tema poolt kiiratud valgus võib olla erakordselt intensiivne, äärmiselt kõrge koherentsuse astmega ning koondunud väga kitsasse lainepikkuste vahemikku, pealegi võib valgus allikast väljuda kitsa paralleelkiirtekimbuna. Laseri väga intensiivne, rangelt koherentne ja kitsa paralleelkiirtekimbuna leviv kiirgus on toonud talle väga palju kasutusalasid. Laser ei ole mitte üksnes energiarikas ja suure intensiivsusega, vaid ühendab lisaks sellele mõningaid valguslainete jooned raadiolainete mõningate omadustega. Laser on tegelikult lühend sõnade algtähtedestr. Sõna laser on lühend inglisekeelseist sõnadest "Light Amplification by Stimulated Emission of Radiation" (valguse võimendamine stimuleeritud kiirguse varal). Laser kui optiline kvantgeneraator (kvantelektroonika

Füüsika
53 allalaadimist
thumbnail
5
doc

Laserid

Sisukord 1. Laserkiirte rakenduste jaotumine kaheks..........................................................................2 2. Laser radarina....................................................................................................................3 3. Laser mõõtmiseks..............................................................................................................4 4.Laser meditsiinis.................................................................................................................5 4.1. Laseri kasutamine silmade ravis....................................................................5 4.2. Laser kortsude eemaldajana.........................................................................

Füüsika
24 allalaadimist
thumbnail
4
doc

Laserid

Light Amplification by Stimulated Emission of Radiation esitähtedest, mis tähendab valguse võimendumist stimuleeritud kiirguse kaudu. Stimuleeritud kiirguse tõestas juba 1916. aastal Albert Einstein, kuid esimese laseri teostamiseks läks siiski veel aega. Laseri põhimõtte avastas aga Charles Townes USA-s 1954. aastal, ning asus seda viimistlema koos Schawlow´ga. USA Theodore Maiman ehitas esimese töötava laseri, 16. mail 1960. aastal milleks oli sünteetilisest rubiinist silinder. Rubiin andis tavalist valgust välklambist ja kiirgas laserivalgust. Laseri leiutamisel ei saa aga ühte kindlat nime nimetada, oma osa on selles 20. sajandi suursaavutuses nii Townes'il, Schawlow'l, Gouldil, Maimanil, Prohhorovil kui ka Bassovil. Aatom kiirgab valguse footoni siis, kui elektron langeb aatomis kõrgema energiaga tasemelt ehk ergutatud olekust madalama energiaga tasemele. Enamikel juhtudel kiirgavad ergutatud elektronid valgusfootoneid iseeneslikult. Seda kutsutakse

Füüsika
24 allalaadimist
thumbnail
7
doc

Väikeste osakeste läbimõõdu määramine gaaslaseri abil

TÜRI KOLLEDZ Väikeste osakeste määramine gaaslaseriga Referaat Hannelore 12/14/2010 1 Sisukord Sisukord.................................................................................................................................. 2 Mis on laser?........................................................................................................................... 3 HeNe laseri ehitus ja tööpõhimõte........................................................................................... 4 Väikeste osakeste läbimõõdu määramine gaaslaseri abil....................................................... 5 Teooria....................................................................................................................

Füüsika loodus- ja...
12 allalaadimist
thumbnail
9
doc

Laserid

1960. aasta mais õnnestus Ameerika teadlasel Theodore Maimanil luua esimene laserkiir, erepunase valguse impulss. Tema laseriks oli rubiinlaser ( joon.1). joon. 1 Esimene laser tekitas valgust sünteetilisest rubiinist. Rubiin annab tavalist valgust välklambist ja kiirgab laserivalgust. Sellega oli pandud alus uuele teadusharule, millele leitakse tänapäeval juba sadu ning isegi tuhandeid kasutusi teaduses, tehnikas ja meelelahutuses. Sõna ,,laser" on tulnud ingliskeelsest sõnadest light amplification by stimulated emission of radiation mis tähendab ,,valguse võimendus kiirguse stimuleeritud eritumise kaudu". Laser on seade, mis võimaldab kiirgata kitsaid, koherentseid ja monokromaatilisi valguskimpe

Füüsika
145 allalaadimist
thumbnail
3
docx

Füüsika kodune kontrolltöö "Laserid"

ergastamine toimub pidevalt, siis peagi on ergastatud olekus elektrone rohkem kui neid on põhiolekus. Sellist olukorda nimetatakse pöördhõiveks, sest tavaliselt on elektrone põhiolekus rohkem kui ergastatud olekuis. Kui nüüd tuleb kusagilt valguskvant, mille energia vastab metastabiilse oleku ja põhioleku energiate vahele, siis tekib stimuleeritud kiirgus ja metastabiilses olekus elektronid lähevad korraga põhiolekusse. Sellega kaasneb ka tugev kiirgus. 11. Mis on laserid? - Laser ehk valguskvantgeneraator ehk optiline kvantgeneraator on indutseeritud kiirguse omadustel põhinev seade, mis tekitab monokromaatilist elektromagnetkiirgust spektri optilises, kas siis ultravioletses, nähtavas või infrapunases osas. 12. Kuidas saavutatakse laserites pöördhõive? Joonis. - Laserkiirgus saab tekkida, kui aine aatomitel on elektronide jaoks sobivad energeetilised olekud: põhiolek, ergastatud olek ja metastabiilne olek. Ergastamisel

Füüsika
11 allalaadimist
thumbnail
54
ppt

Laserite kasutamine silmakirurgias

Laserite kasutamine silmakirurgias Millest hakkan rääkima ? Ajalugu Laserid Laseri kiirguse bioloogiline toime Nägemishäired Kuidas saab neid ravida laserite abil LASIK (EpiLasik, Lasek, ...) FRK Mis mõtleb sellest FDA ? Ajalugu LASER (= valgus kvantgeneraator = optiline kvantgeneraator) indutseeritud kiirguse omadustel põhinev seade, mis tekitab monokromaatilist elektromagnetkiirgust spektri optilises, kas siis UV, nähtavas või IR osas. "Laser" tuleb ingliskeelsest fraasist light amplification by stimulated emission of radiation, mis sõnasõnalt tõlkides tähendab valguse võimendamist stimuleeritud kiirguse kaudu. 1916 ­ Albert Enstein pakub välja mõiste stimuleeritud emission.

Meditsiin
6 allalaadimist
thumbnail
67
doc

Valguskaablid

ADSL asümmeetriline abonendiliin APC viltuse lihvimisega füüsikaline kontakt ATM assünkroorne edastamise meetod BD maja(hoone) magistral-jaotusliin BW ribalaius CAT 5 5.kategooria;üldkaabelduse kaabli-ja liideste kategooria 5 CATV kaabel-TV CD piirkondlik hargnevus ­jaotus CENELEC Euroopa Standardiseerimise organ DFB kitsaspektriline laser DS hajumisnihkega DWDM märgamine DXC digitaalne ristühendus FC FC-liides FD korruste jaotur FDDI optilisele kiule baseeruv kohtvõrk FP laseri tüüp FR tulekindel FRP klaaskiuga armeeritud plastik FWM 4 laine segamine GI sujuv kiud (tüüp 50/125µm) GK GK-kiud 62,5/125µm (Soome tüüp)

Telekommunikatsioon
15 allalaadimist
thumbnail
43
pdf

Teema 4, Optoelektroonika elemendid ja infoesitusseadmed

punase värvuse liitmisel, st et kollase värvuse saamiseks peavad helendama roheline ja punane rakuke). Iga rakuke on täidetud hõrendatud väärisgaasiseguga (neoon + ksenoon; võidakse lisada ka heeliumi). Kujutise saamiseks tüüritakse igat rakukest selle juurde kuuluva transistoriga, mille avareziimis "süüdatakse" plasma, mis tähendab, et rakukeses olev gaas ioniseeritakse ja see muutub plasmaks (plasma - ioniseeritud gaas, aine neljas olek). Plasma poolt emiteeritav ultraviolettkiirgus lainepikkusega 140 ...190 nm paneb helendama vastava põhivärvuse luminofoori, muutes UV-kiirguse nähtavaks valguseks. Elektroonika alused. Teema 4 ­ Optoelektroonika elemendid ja infoesitusseadmed 23 (43) Kambrikestes olev gaas on tugevasti hõrendatud, selles plasma tekitamiseks vajalik pinge on mõnisada volti

Elektroonika alused
54 allalaadimist
thumbnail
109
doc

Füüsikaline maailmapilt

............................................................................................................42 7.9. Elektritakistus..................................................................................................... 43 7.10. Elektrivool vedelikes ja gaasides......................................................................45 7.11. Juhid, pooljuhid, dielektrikud .......................................................................... 46 7.12.Geomeetriline optika..........................................................................................47 7.13.Fotoefekt (välis- ja sise-)................................................................................... 52 8.Tiirlemine ja pöörlemine ............................................................................................54 8.1. Ühtlane ringliikumine......................................................................................... 54 8.2. Pöörlemine .............

Füüsikaline maailmapilt
72 allalaadimist
thumbnail
61
pdf

Optilised omadused ja optilised materjalid

4.1 Doppleri efekt 4.4.2 Vavilov-Cherenkovi efekt 8.5 Vaselego-Pendry lääts 8.6 Optiline peitmine 8.7 Transformatsioonioptika 8.8 Näiteid metamaterjalidest 9. Vedelkristallid. Rakendused. 9.1 Sissejuhatus. 9.2 Vedelkristall-kompensaator. 1 SiSSEJUHATUS Valguse ja aine vahelise vastastikmõju uurimisega on inimkond tegelenud juba üle kolme tuhande aasta. Nii vanaks hinnatakse Assüüriast leitud vanimat läätse. Hiljem on optika arengu mootoriks olnud astronoomia ja vajadus optiliste vaatlusseadmete järele. Vaatamata valguse uurimise pikale ajaloole, on tänapäevane teooria kujunenud viimase paarisaja aastaga. Suurima läbimurde tegi 19. sajandil James Clerk Maxwell, kes uurides elektri- ja magnetvälju avastas nendevahelised seosed, mida tänapäeval tuntakse kui Maxwelli võrrandeid. Analüüsides oma võrrandite lahendeid vaakumis,

Materjaliteaduse...
10 allalaadimist
thumbnail
142
doc

Arvutite riistvara

Eesti Mereakadeemia Informaatika ja arvutitehnika õppetool INFORMAATIKA - I Arvutite riistvara (loengukonspekt) Koostas: J.Pääsuke Tallinn 2001-2004.a. Sisukord 1. Sissejuhatus............................................................................................................................4 1.1. Arvutite (personaalarvutite) ajaloost...............................................................................5 1.2. Mõningaid põhimõisteid..................................................................................................6 1.3. Arvuti väljast ja seest vaadatuna.....................................................................................7 2. Arvutite protsessorid.............................................................................................................

Arvutid
34 allalaadimist
thumbnail
50
doc

Exami materajal

Suurema salvestamistihedusega kui magneetilised kettad. CD Infrapunase laseriga põletatakse 0.8 micronilise diameetriga augud klaasist kattega master diskile. Sellest vormitakse CD, kus on aukude asemel mügarikud. Polükarbonaadi abil vormitakse sellest CD, mis on sama mustriga nagu master. CD kaetakse õhukese alumiiniumkihiga, mis omakorda kaetakse kaitsva lakiga. Lohke polükarbonaadis kutsutakse "pit"-tideks ja põletamata alasid aukude vahel kutsutakse "land"-iks e. maaks. Infrapuna laser loeb CD-le salestatud infot polükarbonaat poole pealt, kui lohud ja tasased pinnad temast mööduvad. Lohkudest peegeldub laservalgus tagasi nii, et valgusdetektorisse jõuab vähem valgust, kui tasaselt pinnalt tagasi peegeldudes. Lohud ja tasane pind on kirjutatud CD-le spiraalselt alustades CD keskel oleva augu lähedusest ja liikudes kogu aeg väljapoole. Seega peab ka ketta pöörlemiskiirus vähenema CD-ROM Valmistatakse CD-ga ühte moodi. Jagatud sektoriteks

Arvutid
220 allalaadimist
thumbnail
31
rtf

Põhivara aines Füüsikaline maailmapilt

Negatiivne pikkus tähendab seda, et vastav vektor on suunatud vastupidiselt kokkuleppelisele positiivsele suunale. Kui on oluline rõhutada mingi suuruse vektoriaalsust, siis on selle suuruse tähis valemis toodud rasvases kirjas (bold). Loodusteadusliku info topoloogia (paiknemisõpetuse) põhiprobleem: millises järjestuses on otstarbekas esitada loodusteaduslikke teadmisi? Senises füüsikaõppes on järjestus eelkõige ajalooline: mehaanika, soojusõpetus, elekter, optika, mikrofüüsika (nii nagu neid järjest tundma õpiti). Käesolevas aines on topoloogiliselt esmatähtsad olemuslikud seosed nähtuste vahel. Kaasaegse füüsikalise maailmapildi info märksõnaline järjestus käesolevas aines on järgmine: kehad liikumine vastastikmõju aine ja väli atomism spinn. Seejärel vaadeldakse absoluutse 4 kiiruse, laine-osakese dualismi, ning tõenäosuslikkuse printsiipe.

Füüsika
35 allalaadimist
thumbnail
32
docx

Loodusteaduslikud mõtlemisviisid

Põhjuseks on molekulidevahelised tõmbejõud ja molekulide üleminek erineva kiirusega liikuvate vedelikukihtide vahel. Vedelikel on veel üks omadus, mis seiseneb selles, et vedelik võib tungida peenikestesse torudesse, kapillaaridesse. Sellest ka nähtuse nimetus – kapillaarsus. Gaasides asuvad molekulid üksteisest kaugel, nii et nad pole praktiliselt vastastikmõjus. Molekulid saavad seetõttu vabalt liikuda, ainult aegajalt põrkudes. Seepärast gaas täidab alati kogu anuma. Ainet gaasilises olekus nimetatakse gaasiks, kui aine sellel temperatuuril ei saa olla vedelas olekus. Kui aine saab antud temperatuuril olla nii vedelas kui gaasilises olekus, kasutatakse auru mõistet. Gaase iseloomustatakse peamiselt kolme suurusega: temperatuur, rõhk ja ruumala. Temperatuur on määratud molekulide liikumiskiirusega: mida suurem kiirus, seda kõrgem temperatuur.

Loodusteadused
2 allalaadimist
thumbnail
28
doc

põhivara aines füüsikaline maailmapilt

suunatud vastupidiselt kokkuleppelisele positiivsele suunale. Kui on oluline rõhutada mingi suuruse vektoriaalsust, siis on selle suuruse tähis valemis toodud rasvases kirjas (bold). Loodusteadusliku info topoloogia (paiknemisõpetuse) põhiprobleem: millises järjestuses esitatuna on loodusteaduslikud teadmised kõige paremini omandatavad? Senises füüsikaõppes on järjestus eel- kõige ajalooline: mehaanika, soojusõpetus, elekter, optika, mikrofüüsika (nii nagu neid järjest tundma õpiti). Käesolevas aines on topoloogiliselt esmatähtsad olemuslikud seosed nähtuste vahel. Kaasaegse füüsikalise maailmapildi info märksõnaline järjestus käesolevas aines on järgmine: kehad liikumine vastastikmõju aine ja väli atomism spinn. Seejärel vaadeldakse absoluutse kiiruse, laine-osakese dualismi, ning tõenäosuslikkuse printsiipe. Reaalsuse (mateeria) põhivormideks on aine ja väli

Füüsika
212 allalaadimist
thumbnail
29
doc

Põhivara füüsikas

Põhivara aines Füüsika Maailm on kõik see, mis on olemas ning ümbritseb konkreetset inimest (indiviidi). Indiviidi põhiproblee- miks on tunnetada oma suhet maailmaga ­ omada adekvaatset infot maailma kohta ehk maailma- pilti. Selle info mastaabihorisondi rõhutamisel kasutatakse maailmaga samatähenduslikku mõistet Universum. Maailma käsitleva info mitmekesisuse rõhutamisel kasutatakse maailma kohta mõistet loodus. Religioosses käsitluses kasutatakse samatähenduslikku mõistet ­ (Jumala poolt) loodu. Inimene koosneb ümbritseva reaalsuse (mateeria) objektidest (aine ja välja osakestest) ning infost nende objektide paigutuse ning vastastikmõju viiside kohta. Selle info põhiliike nimetatakse religioossetes tekstides hingeks ja vaimuks. Vaatleja on inimene, kes kogub ja töötleb infot maailma kohta. Vaatleja tunnusteks on tahe (valikuvaba- duse olemasolu), aistingute saamine (rea

Füüsika
121 allalaadimist
thumbnail
58
doc

Universum pähklikoores

See näitab, et on olemas kvantgravitatsiooni ja soojusteaduse vaheline süvaseos. Ühtlasi saab sellest järeldada, et kvantgravitatsiooni ja holograafiaks nimetatava pildistusmenetluse vahel on olemas sarnasus (joon. 2.11). Nimelt võib informatsioon aegruumi mingi osa kvantolekute kohta olla kodeeritud selle osa piirdel, millel on kaks mõõdet vähem. Analoogia seisneb selles, et ka hologramm sisaldab kolmemõõtmelist kujutist kahemõõtmelisel pinnal. Kui kvantgeneratsioon hõlmab holograafia printsiipi, siis peaksime suutma selgitada ka mustade aukude sisemuses toimuvat. See on tähtis, kui tahame selgitada mustadest aukudest väljuva kiirguse olemust. Kui me seda ei suuda, siis ei suuda ma ennustada ka tulevikku nii täielikult, kui loodeti. Tundub, et me elame 3-braanil ­ neljamõõtmelisel pinnal (3 ruumimõõdet + aeg), mis piirab viiemõõtmelist piirkonda, kusjuures viies mõõde on ülipisikeseks kokku keerdunud. Maailma olekusse

Füüsika
220 allalaadimist
thumbnail
83
doc

Kordamisküsimused: Elektriväli ja magnetväli.

Elektrolüütides kehtib Ohm'i seadus: 1836. a.,tehes elektrolüüsikatseid erinevate ainetega, avastas M. Faraday kaks lihtsat seadust: 1) Elektroodil eralduva aine mass on võrdeline elektrolüüti läbinud laenguga. 2) Võrdetegur sõltub ainest ja teda nimetatakse elektrokeemiliseks ekvivalendiks. Aine elektrokeemiline ekvivalent on võrdeline aatommassi ning pöördvõrdeline valentsiga. Mõlemad seadused saab kokku võtta ühte valemisse: Gaasid - Definitsiooni järgi koosneb gaas vabadest molekulidest; et need peavad olema elektriliselt neutraalsed, ei saa gaas elektrit juhtida. Et gaasilises keskkonnas tekiks vool, tuleb seal kõigepealt tekitada laengukandjaid. Voolu gaasides nimetatakse elektrilahenduseks (gaaslahenduseks). See lahendus võib olla kaht tüüpi: 1. Sõltuv lahendus, kui laengukandjaid (ioone, elektrone) tekitab mingi kõrvaline allikas (soojus, valgus, radioaktiivne kiirgus).

Füüsika
214 allalaadimist
thumbnail
83
doc

Füüsika eksami küsimuste vastused

Elektrolüütides kehtib Ohm'i seadus: 1836. a.,tehes elektrolüüsikatseid erinevate ainetega, avastas M. Faraday kaks lihtsat seadust: 1) Elektroodil eralduva aine mass on võrdeline elektrolüüti läbinud laenguga. 2) Võrdetegur sõltub ainest ja teda nimetatakse elektrokeemiliseks ekvivalendiks. Aine elektrokeemiline ekvivalent on võrdeline aatommassi ning pöördvõrdeline valentsiga. Mõlemad seadused saab kokku võtta ühte valemisse: Gaasid - Definitsiooni järgi koosneb gaas vabadest molekulidest; et need peavad olema elektriliselt neutraalsed, ei saa gaas elektrit juhtida. Et gaasilises keskkonnas tekiks vool, tuleb seal kõigepealt tekitada laengukandjaid. Voolu gaasides nimetatakse elektrilahenduseks (gaaslahenduseks). See lahendus võib olla kaht tüüpi: 1. Sõltuv lahendus, kui laengukandjaid (ioone, elektrone) tekitab mingi kõrvaline allikas (soojus, valgus, radioaktiivne kiirgus).

Füüsika
140 allalaadimist
thumbnail
33
docx

Füüsika II Eksam

korda kaugus). Ühik on kulon * meeter (C*m). Suund miinuselt plussile. Dipoolmoment on ka aatomitel ja molekulidel , kus pole ainult 2 punktlaengut, vaid on mitu, pos ja neg laengu kese on nihkunud. Dipoolist veel: Aine koosneb aatomitest, aatomid aga neg ja pos laetud osakestest. Positiivne tuum on ümbritsetud neg elektronkattega. Et negatiivne laeng võrdub suuruselt positiivsega, siis suurel kaugusel aatomist on elektriväljatugevus 0. Aatom näib olevat elektriliselt neutraalne. Põhjuseks on mõlema laengu “raskuskeskmete” kokkulangemine. Öeldakse, et aatom on mittepolaarne ehk tal ei ole poolusi. Kui aga aatomitest moodustub molekul, ei pruugi erimärgiliste laengute raskuskeskmed kokku langeda. Selliseid molekule nimetatakse polaarseteks. Kui poolusi on 2, siis nim laengusüsteemi dipooliks. Nelja poolusega kvadrupooliks jne. Dipooli elektrivälja potentsiaal:

Füüsika ja elektrotehnika
5 allalaadimist
thumbnail
36
doc

Elektromagnetism

1 3. Elektromagnetism 3.1. Elektriline vastastikmõju 3.1.1. Elektrilaeng. Elektrilaengu jäävus seadus. Iga keemilise aine aatom koosneb klassikalise - teooria kohaselt positiivselt laetud tuumast ja selle ümber tiirlevatest negatiivse laenguga elektronidest. Mitmesuguste ainete aatomite koosseisu kuuluvad elektronid on ühesugused, + kuid nende arv ja asend aatomis on erinevad. Mistahes keemilise elemendi aatom tervikuna on normaalolekus elektriliselt neutraalne. Sellest järeldub, et aatomituuma positiivne laeng on võrdne elektronide negatiivsete laengute summaga.

Füüsika
175 allalaadimist
thumbnail
55
pdf

Universum pähklikoores

See näitab, et on olemas kvantgravitatsiooni ja soojusteaduse vaheline süvaseos. Ühtlasi saab sellest järeldada, et kvantgravitatsiooni ja holograafiaks nimetatava pildistusmenetluse vahel on olemas sarnasus (joon. 2.11). Nimelt võib informatsioon aegruumi mingi osa kvantolekute kohta olla kodeeritud selle osa piirdel, millel on kaks mõõdet vähem. Analoogia seisneb selles, et ka hologramm sisaldab kolmemõõtmelist kujutist kahemõõtmelisel pinnal. Kui kvantgeneratsioon hõlmab holograafia printsiipi, siis peaksime suutma selgitada ka mustade aukude sisemuses toimuvat. See on tähtis, kui tahame selgitada mustadest aukudest väljuva kiirguse olemust. Kui me seda ei suuda, siis ei suuda ma ennustada ka tulevikku nii täielikult, kui loodeti. Tundub, et me elame 3-braanil ­ neljamõõtmelisel pinnal (3 ruumimõõdet + aeg), mis piirab viiemõõtmelist piirkonda, kusjuures viies mõõde on ülipisikeseks kokku keerdunud. Maailma olekusse

Kosmograafia
7 allalaadimist
thumbnail
144
doc

Radiobioloogia ja kiirguskaitse

Kiirgus, nt rö-kiirgus, siseneb bioloogilisse süsteemi. Esmane interaktsioon on elektroniga – see on phtalt füüsikaline protsess. Füüsikud räägivad fotoelektrilisest efektist ja Comptoni hajumisest, kuna diagnostilises radioloogias kasutatavad energiad ei ole piisavad paari moodustumiseks. Fotoelektrilise vastastoime käigus antakse kogu kogu footoni energia üle toimivale elektronile, Comptoni protsessi puhul tekib hajunud footon ja vaba elektron. Hajunud footon käitub nagu esmane footon, seni kuni tal jätkub energiat ja fotoelektrilise protsessi või Coptoni hajumise käigus tekib uusi vabu elektrone ja järjset väiksema energiaga footoneid. Kiired elektronid, mis kiirguse neeldumisel tekivad, aeglustatakse vastastoimes teiste absorbeeriva aine elektronidega. Kui selline kiire elektron kohtub aatomituumaga, on tulemuseks Bremstrahlung. Selline energia ümberpaigutumise ahel jätkub, kuni allesjäänud energia on

Bioloogia
10 allalaadimist
thumbnail
105
doc

Füüsika konspekt

11.1.INERTSIAALNE TAUSTSÜSTEEM EINSTEIN JA MEIE Albert Einstein kui relatiivsusteooria rajaja MART KUURME Liikumise uurimine algab taustkeha valikust ­ leitakse mõni teine keha või koht, mille suhtes liikumist kirjeldada. Nii pole aga alati tehtud. Kaks ja pool tuhat aastat tagasi arvas eleaatidena tuntud kildkond mõtlejaid, et liikumist pole üldse olemas. Neid võib osaliselt mõistagi. Sest kas keegi meist tunnetab, et kihutame koos maakera ja kõige temale kuuluvaga igas sekundis umbes 30 kilomeetrit, et aastaga tiir Päikesele peale teha? Eleaatide järeldused olid muidugi rajatud hoopis teistele alustele. Nende neljast apooriast on köitvalt kirjutanud mullu meie hulgast lahkunud Harri Õiglane oma raamatus "Vestlus relatiivsusteooriast". Elease meeste arutlused on küll väga põnevad, kuid tõestavad ilmekalt, et palja mõtlemisega looduses toimuvat tõepäraselt kirjeldada ei õnnestu. Aeg on näidanud, et ka nn. terve mõistusega ei jõua tõe täide sügavusse. E

Füüsika
282 allalaadimist
thumbnail
73
pdf

Enn Mellikovi materjalifüüsika ja -keemia konspekt

...................................... 13 2.2. Aatomi ehitus. ......................................................................................................... 13 2.2.1. Aatomnumbrid. ............................................................................................... 13 2.2.2. Aatommassid. .................................................................................................. 13 2.3. Aatomite elektronstruktuur. Vesiniku aatom. ........................................................ 14 2.3.1. Kõrvalepõige kvantmehhaanikasse. Kvantarvud............................................. 15 2.4. Keerulisemate (multielektroonsete) aatomite elektronstruktuur. ......................... 16 2.4.1. Aatomi suurus.................................................................................................. 16 2.4.2. Elektron-konfiguratsioon elementides. .......................

Ökoloogia ja...
96 allalaadimist
thumbnail
112
docx

Megamaailma füüsika

HÄÄDEMEESTE KESKKOOL Füüsika MEGAMAAILMA FÜÜSIKA Referaat Anna Karin Ericson Juhendaja: Raimu Pruul Häädemeeste 2017 SISUKORD SISUKORD............................................................................................................... 2 SISSEJUHATUS........................................................................................................ 3 1. ASTRONOOMIA................................................................................................... 4 1.2. ASTRONOOMIA HARUD................................................................................. 5 1.4. ASTRONOOMIA AJALUGU.............................................................................. 7 2. MEGAMAAILMA MÕÕTÜHIKUD............................................................................ 7 3. VAATLUSASTRONOOMIA..........................................................................

Füüsika
30 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun