Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse Registreeri konto

Tuumaenergeetika (0)

1 Hindamata
Punktid

Esitatud küsimused

  • Midagi mõne tuumajaamaga kas meid see siis ie puuduta?
Tuumaenergeetika #1 Tuumaenergeetika #2
Punktid 50 punkti Autor soovib selle materjali allalaadimise eest saada 50 punkti.
Leheküljed ~ 2 lehte Lehekülgede arv dokumendis
Aeg2010-02-16 Kuupäev, millal dokument üles laeti
Allalaadimisi 19 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor getzuke15 Õppematerjali autor

Märksõnad

Sarnased õppematerjalid

thumbnail
15
doc

Tuumaenergeetika

vajame energiat, kütust. Energeetika Eestis baseerub põlevkivi soojuselektrijaamadel ja sisseveetaval gaasil ning vedelküttel. Sel viisil elektri tootmine on keskkonnale suhteliselt halb. Kuigi Eesti toodab peaaegu kogu vajatava elektri ise, on tulevik tume, sest põlevkivi varud hakkavad tasapisi ammenduma. Seega tuleks kaaluda teisi võimalusi elektri tootmiseks. Ühtteist on ka juba välja pakutud, kuid otsusele ei ole veel jõutud. Käesolevas ettekandes käsitlemegi üht energia liiki: tuumaenergeetika. Kaalume tuumaenergia plusse ning miinuseid, teeme tutvust tuumaelektrijaamadega ning arutame, kas selline energiatootmisviis sobiks Eestisse. Tuumaenergia ­ mis see on? Tuumaenergia ehk aatomienergia on füüsika seisukohast aatomituuma moodustavate elementaarosakeste süsteemi seoseenergia, mis võib tuumareaktsioonides vabaneda. Energeetika seisukohast on see elektrienergia, mida saadakse tänu tuumareaktsioonidele tuumaelektrijaamades.

Füüsika
thumbnail
2
docx

Tuumaenergeetika

tuumaenergeetika Tuumaenergia ehk aatomienergia on füüsika seisukohast aatomituuma moodustavate elementaarosakeste süsteemi seoseenergia, mis võib tuumareaktsioonides vabaneda. Energeetika seisukohast on see elektrienergia, mida saadakse tänu tuumareaktsioonidele tuumaelektrijaamades. Tuumaelektrijaam on elektrijaam, kus elektrienergiat saadakse aatomituuma lõhustumisest. Tuumajaamades kasutatakse kütusena enamasti uraani. See on maakoores võrdlemisi tavaline element, mida leidub praktiliselt kõigi kivimite koostises. Kaevandamisväärses kontsentratsioonis leidub seda elementi aga vähestes kohtades. Tuumade lagunemise käigus vabaneb energia, mida on vaja

Füüsika
thumbnail
1
docx

Tuumaenergeetika lühidalt

Tuumaenergia ehk aatomienergia on füüsika seisukohast aatomituuma moodustavate elementaarosakeste süsteemi seoseenergia, mis võib tuumareaktsioonides vabaneda. Energeetika seisukohast on see elektrienergia, mida saadakse tänu tuumareaktsioonidele tuumaelektrijaamades. Tuumaenergeetika erineb oluliselt teistest energia saamise viisidest. Tuumaenergiat loetakse säästvaks, sest energia tootmise protsessis ei eraldu CO2. Samas võib tuumajaamaga kaasneda oht radioaktiivse saaste kandumiseks keskkonda.. Lisaks eraldub , nii nagu teistestki elektrijaamadest, suurtes kogustes (mitteradioaktiivset) veeauru ja alati on energia saamisega seotud kaudsed emissioonid. Maailmas toodetakse rohkem kui 16% kogu elektrienergiast tuumkütuse baasil. Kokku on maailmas kasutusel 439 kommertstuumaelektrijaama 30-s riigis. Lisaks sellele on kasutusel 284 õppereaktorit 56 riigis ning umbes 220 reaktorit on paigutatud laevadele või allveelaevadele. Tuumaenergia katab suurima protsendi kogu riigi el

Füüsika
thumbnail
5
doc

Tuumaenergia

Tuumaenergia Tuumaenergia on tõestatud tehnoloogia, mis annab suure panuse maailma elektrivarustuses. Tänaseks on spetsialistidele piisavalt selge, et tuumaenergia on ainus tõeline elektriallikas inimkonna jaoks, mis ei põhjusta kasvuhooneefekti, happevihmu jm. Fossiilsed kütused annavad praegu üle poole maailma elektritoodangust; hüdroenergia ja tuumaenergia osatähtsus on tunduvalt väiksem. Tuumaenergia üksi ei kindlusta turvalisust ja pidevat elektrivarustatust üle maailma ega saa ka ainsaks faktoriks kahandamaks kasvuhoonegaaside emissiooni, kuid ta mängib tähelepanuväärset rolli antud alal. Tuumajaamad peavad oma ellujäämiseks ka tulevikus tõestama oma turvalisust ja seda, et jäätmete ladustamine ei kahjustaks mingilgi moel keskkonda. Tuumaelektrijaamadel on väga kõrge ehitusmaksumus, kuid selle kompenseerib väga madal kütuse hind. Gaasipõletusjaamu võib ehitada odavalt, kuid gaas kütusena on kallis, eriti Lää

Füüsika
thumbnail
2
docx

Tuumaenergia

TUUMAENERGIA Tuumaenergeetika erineb oluliselt teistest energia saamise viisidest. Tuumaenergiat loetakse säästvaks, sest energia tootmise protsessis ei eraldu CO2. Samas võib tuumajaamaga kaasneda oht radioaktiivse saaste kandumiseks keskkonda.. Lisaks eraldub , nii nagu teistestki elektrijaamadest, suurtes kogustes (mitteradioaktiivset) veeauru ja alati on energia saamisega seotud kaudsed emissioonid. KASU. Tuumaenergiat on kasutatud elektri tootmisel juba 50 aastat. Selle aja jooksul on tuumaenergeeti ka läbinud pika arengutee. Praeguseks on ehitatud ligi pooltuhat erineva konstruktsioon iga tuumajaama. Elektrienergia t vajatakse üha enam. tuumaenergia on üks suuremaid elektrienergia allikaid, 443 tuumajaamas üle maailma toodetakse 17% kogu elektrienergia st ja seda kasutab umbes miljard inimest. tuumaenergia kasutamine on elektri tootmiseks paratamatu mitmel põhjusel. Esiteks, ei saa lõputult jätkuda seni domineerinud fossiilsete kütus

Füüsika
thumbnail
28
rtf

Tuumaenergeetika uurimistöö

JÕGEVA ÜHISGÜMNAASIUM 11.A klass Siim Kaaver Tuumaenergeetika Uurimustöö Juhendaja: õp. Heli Toit Jõgeva 2010 SISUKORD Sissejuhatus..................................................................................................................... 1. Mis on tuumaenergia?........................................................................................... 2. Kuidas tuumaenergia tekib?.................................................................................. 3

Füüsika
thumbnail
2
doc

Tuumaenergia

Tuumaenergia Tuumaelektrijaamades kasutatakse ära tuumade lõhustumise tagajärjel vabanev energia. Reaktoris luuakse tuumaenergia tootmiseks kontrollitud ahelreaktsioon, kus energia vabaneb soojusena. Viimast rakendatakse vee kuumutamiseks ja auru tekitamiseks, auru abil pannakse tööle elektrienergia tootmiseks kasutatavad turbogeneraatorid. Kontrollitud ahelreaktsiooni käigus pommitatakse suure massiarvuga tuumi aeglustatud neutronitega, protsessi tulemusel liitub neutron tuumaga põhjustades viimase ergastatud oleku.. Tuumajõudude tõttu lõhustub ergastunud tuum kaheks erineva massiga osaks (kildtuumaks), põhjustades nii kahe uue isotoobi tekke. Lisaks isotoopide tekkele eraldub lõhustumisel alati ka neutroneid ning gamma-kiirgust. Analoogiliselt lõhustub näiteks reaktorites kütusena kasutatav U-235 kaheks väiksema massiarvuga isotoobiks ning sellise protsessi käigus vabaneb suur kogus energiat. Reaktorid jaotatakse nelja põlvk

Füüsika
thumbnail
2
odt

Tuumaenergia

Tuumaenergia Tuumaseadmete ohutus Ohutuse tagamise suhtes on tuumaenergia arengu kestel väga palju tehtud ja saavutatud. Euroopa Liidu kui maailma suurima tuumaelektri tootja seadmetes ei ole kogu ajaloo jooksul toimunud ühtki tõsisemat avariid. Enamik praegustest töötavatest tuumareaktoritest on ohutuse suurendamiseks ja käidu lihtsustamiseks täiustatud. Eriti kehtib see uue põlvkonna kergevee reaktorite kohta, mille ehitusse on projekteeritud lihtsustatud hooldussüsteemid ja passiivsed, see on operaatorist sõltumatult toimivad, ohutussüsteemid. Tuumaenergeetikas võivad ohutuse rikkumise tagajärjed ulatuda kaugele väljapoole tuumajaama ennast. Selgeks näiteks oli puuduliku konstruktsiooniga reaktori ja ohutusreeglite jõhkra rikkumise tulemusena arenenud Tsernobõli avarii 1986. a. Seepärast ei saa tuumaohutusega seotud tegevust ainult tuumajaama operaatori kontrolli alla jätta. Igal juhul on õigustatud tõhus asjakohasele se

Füüsika




Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun