Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

Termodünaamika - sarnased materjalid

gaas, soojus, soojushulk, siseenergia, soojusmasin, prints, entroopia, difusioon, paisuvad, tahked, üleandmine, vedelikule, ainele, saavutatakse, reageerimise, põlemine, kehana, paisumist, kolb, paisub, esialgse, akas, saastus, sisehõõre, erisoojus, paisumisel, silinder, liikuda, andes, soojendamine, suruma, jahutamine, väliskk, põhimõtteks
thumbnail
7
ppt

Termodünaamika I Printsiip

·Termodünaamika I printsiip Koostaja : Maiki Joakit Juhendaja : Margus Neider termodün.-le süsteemile juurdeantav soojushulk läheb süsteemi poolt välisjõudude vastu tehtavaks tööks. A = U Q = U + A ·Siseenergia - on molekulide soojusliikumise e.kin.ja vastastikmõju e.pot.energia summa.(J) Q =cm ; =(t2-t1); t c=erisoojus(4200J/kg*C);cm=C t Seda saab muuta soojusvahetuse käigus:kui soojusvahetuse käigus anda kahele kehale mingi soojushulk,siis tema temp.tõuseb

Füüsika
38 allalaadimist
thumbnail
1
doc

Termodünaamika konspekt

aatomitest ja molekulidest, kasutatakse makroparameetreid. Keskkonnasõbralikkus tähendab peale looduslike kütuste energia efektiivse kasutamise ka energiatootmise jäätmete oskuslikku neutraliseerimist või peitmist. Soojusmasinateks nimetatakse masinaid, mis muundavad soojust tööks. Termodünaamika esimene printsiip väljendab energia jäävuse seadust, teine väidab, et protsesside iseeneslikul kulgemisel looduses on kindel suund. Kumbagi ei saa tõestada. Molekulide energia e. siseenergia, mida sisaldab iga keha, on soojusliikumise energia ja molekulide vastastikmõju potentsiaalse energia summa. Kui soojusvahetuse käigus anda kehale mingi soojushulk, siis tema temperatuur tõuseb ning siseenergia suureneb. Kui keha annab mingi soojushulga ära, siis tema siseenergia väheneb. Kehade siseenergiat on võimalik muuta mehhaanilist tööd tehes. Kui mingi süsteem teeb tööd välisjõudude vastu, siis tema siseenergia väheneb. Kui välisjõud

Füüsika
117 allalaadimist
thumbnail
2
odt

Termodünaamika KT (10.klass)

Jagunevad: Isobaariline – protsess, kus muutumatuks jääb rõhk[p=const], näide: gaasi kuumutamine liikuva kolbiga anumas [V1/T1/V2T2] Isokoorne – protsess, kus muutumatuks jääb ruumala[V=const], näide: kinnises anumas toimuvad protsessid [p1/T1 = p2/T2] Isotermiline – protsess, kus muutumatuks jääb temperatuur[T=const] [p1V1 = p2V2] 11. Termodünaamika I seadus – Termodünaamilisele süsteemile juurdeantav soojushulk läheb süsteemi siseenergia suurendamiseks ja süsteemi poolt välisjõudude vastu tehtavaks tööks[Q =DeltaU + A] 12. Gaas kui töötav keha –gaas paisub võrreldes vedelike ja tahkete ainetega palju rohkem;soojushulga üleandmine vedelikule või tahkele ainele on palju raskem kui gaasile, kuna gaasis saavutatakse see erinevate gaaside reageerimise teel. 13. Soojusmasin – masin, mis muudab keha siseenergia mehaaniliseks energiaks,

Termodünaamika
8 allalaadimist
thumbnail
5
doc

Termodünaamika alused ( kokkuvõte)

Termodünaamika alused Siseenergiaks nim. keha molekulide kineetilise ja potentsiaalse energia summat. Siseenergia levimist ühelt kehalt teisele nim. soojusülekandeks. Soojusülekandes levib siseenergia soojemalt kehalt või kehaosalt külmemale. Seejuures soojema keha siseenergia väheneb ja külmema keha siseenergia suureneb. Soojusülekanne kestab seni, kuni kehade temp. saavad võrdseks. Soojusülekande liigutus: ¤Soojusjuhtivuseks nim. soojusülekannet, kus energia levib ühelt aineosakeselt teisele molekulidevaheliste põrgete tõttu, ilma et aine ümber paikneks. ¤Konvektsiooniks nim. soojusülekannet, kus energia levib gaasi-või vedeliku liikumise tõttu. ¤Soojuskiirguseks nim. soojusülekannet, kus energia levib elektromagnetlainete kiirgamise ja neelamise tõttu.

Füüsika
39 allalaadimist
thumbnail
10
odt

Füüsika 10. klassi teemad

· V(ruumala) konsentratsioon) Kui üht olekuparameetrit. · T(abs. Temperatuur) · v(molekulide muuta, siis muutub vhmlt · (tihedus) keskmine kiirus veel üks ja seega ka olek. Molekul- molekulaarfüüsikas vähim osake, millest ained koosnevad ja mis on pidevas kaootilises liikumises Temperatuur- iseloomustab keha soojuslikku seisundit; molekulide liikumise keskmise kineetilise energia ja siseenergia mõõt (t) Absoluutne temperatuur- temperatuur Kelvini skaalal (T) Absoluutne nulltemperatuur- temperatuur, mille saavutamisel molekulid lakkavad liikumast Ideaalne gaas- lihtsaim mudel gaasi kirjeldamiseks, milles ei arvestata molekulide mõõtmeid ja vastastikmõju Mool- ainehulk, mis sisaldab Avogadro arvuga võrdse arvu molekule või aatomeid (mol) Avogadro arv- aatomite või molekulide arv ühes moolis aines (N A) Molaarmass- ühe mooli aine mass (M)

Füüsika
60 allalaadimist
thumbnail
54
pdf

SOOJUSTEHNIKA EKSAMI VASTUSED

SOOJUSTEHNIKA EKSAMI VASTUSED 1. Termodünaamiline keha e. töötav keha. Termodünaamilises süsteemis asuvat keha või kehi, mille vahendusel toimub energiate vastastikune muundumine nim. termodün.kehaks. Termodün.kehaks on veel keha, mille kaudu toimub soojuse muundumine mehaaniliseks tööks või töö muundamine soojuseks. Tdk võivad olla nii tahked, vedelad kui gaasilised kehad. Soojusjõumasinates nagu sisepõlemismootor soojuse muundumisel mehaaniliseks tööks on tdk tavaliselt kütuse põlemisgaasid. Aurujõuseadmetes on enamikul juhtudel tdk veeaur. Töötava keha olekuparameetrid. Neande all mõistetakse füüsikalisi makrosuurusi, mis määravad kindlaks töötava keha oleku. Intensiivseteks nim. selliseid töötava keha parameetreid, mis ei sõltu termodün.süsteemis oleva keha massist või osakeste arvust

Soojustehnika
46 allalaadimist
thumbnail
2
doc

Soojustehnika teooria eksamiks

vahemikus 0- kindlaks töötava keha oleku. Intensiivseteks nim. siseenergiaks, mis on keha molekulide kulg -ja 100C, alla 0 on ta tahkes ja üle 100 gaasilises. Aine selliseid töötava keha parameetreid, mis ei sõltu pöörlemisliikumiseenergia, aatomite võnkumisenergia jt. faasilise oleku väljendamiseks kasut. faasimuutuse termodün.süsteemis oleva keha massist või osakeste energiate summa. siseenergia antakse tavaliselt keha 1kg diagramme. Nt. pt- diagramm, Ts- diag., Pv, hs- diag. arvust. Intensiivne parameeter on nt. rõhk ja temp. kohta. Siseenergia on ekstensiivne suurus. Siseen. kui Aditiivseteks e. ekstensiivseteks termodün parameetriteks olekufunktsiooni väärtuse määravad keha kaks on parameetrid, mis on proport-sionaalsed süsteemis meelevaldset olekuparameetrit, sagedamini valitakse olevate kehade massiga või osakeste arvuga. Nt

Soojustehnika
727 allalaadimist
thumbnail
13
doc

Soojusfüüsika

kirjeldamisel. Nendeks on suurused, mida on võimalik hõlpsasti mõõta, näiteks ainekoguse mass, rõhk, ruumala, temperatuur . Suurusi rõhk, ruumala ja temperatuur nimetatakse ka olekuparameetriteks. Olek ei tähenda siin mitte agregaatolekut, vaid ainekoguse seisundit, mis on määratud olekuparameetrite p, V ja T konkreetsete väärtuste kogumiga. Kui ühte olekuparameetrit muuta, muutub ka vähemalt üks teine olekuparameeter. 4.1.1. Temperatuur, soojus ja siseenergia Soojusõpetuse üheks põhimõisteks on temperatuur. Temperatuuril ei ole lühikest ja kõikehõlmavat definitsiooni. Sageli öeldakse , et temperatuur on füüsikaline suurus, mis iseloomustab keha soojuslikku seisundit ja on määratud keha molekulide soojusliikumise kineetilise energiaga. Molekulide soojusliikumine esineb mitmel kujul. Tahkistes molekulid võnguvad kindlate tasakaaluasendite ümber, vedelikes toimub lisaks võnkumisele veel

Füüsika
27 allalaadimist
thumbnail
15
doc

Soojusõpetus

Pa ehk N / m2 kgf/cm2 mmHg Pa 1 10 -5 0,0075 kgf/cm2 10 (98067) 5 1 735,6 mmHg 133,3 1,36× 10 - 3 1 4. Ideaalse gaasi olekuvõrrandid Ideaalne gaas on kujutletav gaas, milles täielikult puudub molekulide vastastikune mõju. Tugevasti hõrendatud reaalsed gaasid (näiteks õhk nornaaltingimustel) on omadustelt lähedased ideaalsele gaasile. Olekuvõrrand annab seose gaaside rõhu, temperatuuri ja ruumala vahel Tihti vaadeldakse protsesse, mille puhul üks olekuparameeter jääb konstantseks (ei muutu). Rõhu jäävuse puhul nimetatakse protsessi isobaarseks. Temperatuuri jäävuse puhul nimetatakse protsessi isotermiliseks

Füüsika
178 allalaadimist
thumbnail
8
docx

Energia - FÜÜSIKA

Elektrivoolu võimsus näitab töö tegemise kiirust ajaühikus. N= A/t 15. Mis ühikutes mõõdetakse elektrienergiat? Kui suur on see dzaulides, kui palju maksab elektrienergia Eestis? Elektrienergia SI ühik on dzaul (tähis J) ehk vattsekund (Ws). Praktikas mõõdetakse ja arvestatakse elektrienergiat kilovatt-tundides: 1 kWh = 3,6 × 106 J. 1 Ws = 1 J. 3,61 senti/kWh 5,26 senti/kw 16. Joule'i ­ Lenzi seadus Joule'i ­ Lenzi seadus ütleb, et elektrivoolu toimel eralduv soojushulk on võrdeline voolutugevuse ruuduga, takistusega ja voolu kestusega. Q=I2Rt 17. Kirjelda elektrivoolu vedelikes. Vedelikes on vabadeks laengukandjateks erinimelised ioonid. Positiivsed ioonid hakkavad liikuma negatiivse klemmi poole ning negatiivsed ioonid positiivse klemmi poole. 18. Mis on Galvanotehnika, selle liigid Galvanotehnika on meetod, kus elektrolüüsi käigus kaetakse esemeid metallikihiga. 1. Galvanosteegia ­ õhuke metallikiht, kroomimine jms, tehakse ilusamaks 2

Elektriõpetus
6 allalaadimist
thumbnail
57
rtf

TEHNILINE TERMODÜNAAMIKA

TEHNILINE TERMODÜNAAMIKA SISSEJUHATUS Termodünaamika on teadus energiate vastastikustest seostest ja muundumistest, kus üheks komponendiks on soojus. Tehniline termodünaamika on eelmainitu alaliigiks, mis uurib soojuse ja mehaanilise töö vastastikuseid seoseid. Tehniline termodünaamika annab alused soojustehniliste seadmete ja aparaatide (näiteks katelseadmete, gaasiturbiinide, sisepõlemismootorite, kompressorite, reaktiivmootorite, soojusvahetusseadmete, kuivatite jne.) arvutamiseks ja projekteerimiseks. Tehniline termodünaamika nagu termodünaamika üldse tugineb kahele põhiseadusele.

Termodünaamika
17 allalaadimist
thumbnail
12
doc

Soojustehnika - küsimused vastustused

Termodünaamika on teadus erinevate energialiikide muutus S= S2- S1 = s1s2 dQ/ T [J/(kg*K)]. Entroopia on vastastikustest muundumistest. Termodünaamika hõlmab ekstensiivne suurus. Entroopia kui olekufunktsiooni väärtuse mehaanilisi, soojuslike, elektrilisi, keemilisi, elektromagnetilisi ja määravad kaks meelevaldset olekuparameetrit. Gaasi entroopia muid nähtuseid. Tehnilise termodünaamika põhi ülesanne on väärtus normaaltingimustel loetakse nulliks. teoreetiliste aluste loomine, soojusmootorite, soojusjõu seadmete, soojus transformaatoritele. 4. Isohooriline protsessiks nim. sellist protsessi, kus Termodünaamilise süsteemi all mõistetakse kehade kogu, termodünaamilise süsteemi soojuslikul mõjutamisel selle maht

Soojustehnika
89 allalaadimist
thumbnail
76
pdf

Soojusõpetuse konspekt

Soojuspaisumine ja mehaanilised pinged.........7 1.7. Ideaalse gaasi olekuvõrrand......................................................................................................9 II Gaaside kineetiline teooria..............................................................................................................12 2.1. Gaaside kineetilise teooria põhialused....................................................................................12 2.2. Temperatuur ja siseenergia......................................................................................................13 2.3. Siseenergia ja soojusmahtuvus...............................................................................................15 2.4. Adiabaatiline ja polütroopne protsess ....................................................................................16 2.5. Ideaalse gaasi töö erinevates protsessides........................................................................

Füüsika
31 allalaadimist
thumbnail
26
doc

10 klassi füüsika kokkuvõte

maksimaalse tingimuse tekkimist mingis punktis Soojusõpetus · Soojusõpetus tegeleb mateeria liikumise soojusliku vormiga. Soojusõpetus tugineb energia jäävuse seadusele. · Molekulaarfüüsikas nimetatakse molekuliks sellist aine osakest, mis osaleb molekulaarliikumises ehk soojusliikumises. · Molekuli massi suurusjärk: 10-23kg; Molekuli läbimõõt: 10-10m. Kõige lihtsama ehitusega aine on gaas. · Gaaside molekulaarkineetilise teooria kolm põhieeldust: 1) Gaas koosneb molekulidest (osakestest) 2) Molekulid on pidevas kaootilises liikumises 3) Molekulide vahel on vastastikmõju 1 Makrokäsitlus ­ vaadeldakse gaasi kui tervikut. Suurusi, mis ei eelda aine koosnemist osakestest, nimetatakse makroparameetriteks: (m, p, V, T, , t.) p, V, T ­ olekuparameetrid, mis määravad gaasi oleku. Kui üks parameeter muutub, peavad ka

Füüsika
577 allalaadimist
thumbnail
40
doc

Mehaanika, kinemaatika, jõud ja impulss ning muud teemad

Elementaarlainete liitumine põhjustab minimaalse ja maksimaalse tingimuse tekkimist mingis punktis Soojusõpetus  Soojusõpetus tegeleb mateeria liikumise soojusliku vormiga. Soojusõpetus tugineb energia jäävuse seadusele.  Molekulaarfüüsikas nimetatakse molekuliks sellist aine osakest, mis osaleb molekulaarliikumises ehk soojusliikumises.  Molekuli massi suurusjärk: 10-23kg; Molekuli läbimõõt: 10-10m. Kõige lihtsama ehitusega aine on gaas.  Gaaside molekulaarkineetilise teooria kolm põhieeldust: 1) Gaas koosneb molekulidest (osakestest) 2) Molekulid on pidevas kaootilises liikumises 3) Molekulide vahel on vastastikmõju  Makrokäsitlus – vaadeldakse gaasi kui tervikut. Suurusi, mis ei eelda aine koosnemist osakestest, nimetatakse makroparameetriteks: (m, p, V, T, , t.) p, V, T – olekuparameetrid, mis määravad gaasi oleku

Füüsika
36 allalaadimist
thumbnail
20
doc

Füüsika teooria ja valemid (10.klass)

Elementaarlainete liitumine põhjustab minimaalse ja maksimaalse tingimuse tekkimist mingis punktis Soojusõpetus Soojusõpetus tegeleb mateeria liikumise soojusliku vormiga. Soojusõpetus tugineb energia jäävuse seadusele. Molekulaarfüüsikas nimetatakse molekuliks sellist aine osakest, mis osaleb molekulaarliikumises ehk soojusliikumises. Molekuli massi suurusjärk: 10-23kg; Molekuli läbimõõt: 10-10m. Kõige lihtsama ehitusega aine on gaas. Gaaside molekulaarkineetilise teooria kolm põhieeldust: 1) Gaas koosneb molekulidest (osakestest) 2) Molekulid on pidevas kaootilises liikumises 3) Molekulide vahel on vastastikmõju Makrokäsitlus ­ vaadeldakse gaasi kui tervikut. Suurusi, mis ei eelda aine koosnemist osakestest, nimetatakse makroparameetriteks: (m, p, V, T, , t.) p, V, T ­ olekuparameetrid, mis määravad gaasi oleku

Füüsika
61 allalaadimist
thumbnail
21
doc

Soojustehnika küsimuste vastused

seadus)....................................................................................................................................................4 8.Mehaaniline töö e.(mahumuutuse töö), arvutamine (valem) ja kujutamine olekudiagrammil...........5 9.Tehniline töö e.(rõhumuutuse töö), arvutamine (valem) ja kujutamine olekudiagrammil.................5 10.Siseenergia ja soojuse mõiste (kuidas leitakse siseenergia, muutuse määramine protsessis)...........5 11.Termodünaamika esimene seadus (sõnastus ja matemaatiline avaldis)........................................... 6 12.Entroopia mõiste ja TS-diagramm....................................................................................................6 13.Soojushulga määramine entroopia abil (Soojushulga kujutamine TS-diagrammil).........................7 14

Soojustehnika
400 allalaadimist
thumbnail
26
doc

Tahke keha mehhaanika.

süsteemi mehhaaniline energia väheneb aja jooksul, energia "kaob" kuhugi. Näiteks väheneb igasuguse pendli võnkeamplituud aja jooksul, valemi (4.10) järgi väheneb siis ka pendli energia. Sealjuures täheldame süsteemi ja seda ümbritseva keskkonna soojenemist. Energia ei kao, see vaid muundub suurte kehade kineetilisest ja potentsiaalsest energiast erinevaks energiavormiks, siseenergiaks. Kehade mehhaanilise energia ja siseenergia vastastikuseid üleminekuid, samuti siseenergia üleminekut ühelt kehalt teisele, ühe sõnaga ­ soojusnähtusi, uurib soojusõpetus e. termodünaamika. Termodünaamika ei seleta siseenergia olemust. Osutub, et see on kehade mikroskoopiliste koostisosade ­ molekulide liikumise kineetilise ja molekulidevaheliste konservatiivsete jõudude (molekulaarjõudude) potentsiaalse energia summa. Molekulide liikumise ja molekulaarjõududega seotud küsimusi uurib molekulaarfüüsika. Termodünaamika ja

Füüsika
99 allalaadimist
thumbnail
19
doc

Soojustehnika eksamiküsimused (vastused)

mõõtühikud. Termodünaamilised kehad ­ gaasid ja aurud(veeaur) sest nad muudavad oma mahtu väga suurtes piirides nende soojuslikul ja mehaanilisel mõjutamisel. Termilised olekuparameetrid: erimaht, absoluutne rõhk ja abs. Temperatuur. 1) Erimaht ­ aine massiühiku maht (v) [ m³/kg] 2) Rõhk ­ Pinnaühiku normaali suunasmõjuv jõud (p) [Pa, N/m², mmHg, atm, bar, psi] 3) Temperatuur ­ Absoluutne temperatuur (T) [K] Energeetilised olekuparameetrid: Siseenergia, entalpia, entroopia 1) Siseenergia (U) [J] 2) Entalpia (H) [J] 3) Entroopia (S) [J/K] 7. Absoluutse rõhu , ülerõhu ja alarõhu mõiste. Absoluutne rõhk ­ gaasi tegelik rõhk ja saadakse siis kui rõhu mõõtmisel võtta 0-nivooks absoluutne vaakum. Ülerõhk ­ rõhk mis on kõrgem atmosfääri rõhust. Nim. ka manomeetriline rõhk Alarõhk ­ rõhk mis on madalam atmosfääri rõhust. Nim. ka vaakummeetriline rõhk. 8. Temperatuuri skaalad.

Soojustehnika
764 allalaadimist
thumbnail
19
doc

Soojustehnika eksami küsimuste vastused

mõõtühikud. Termodünaamilised kehad ­ gaasid ja aurud(veeaur) sest nad muudavad oma mahtu väga suurtes piirides nende soojuslikul ja mehaanilisel mõjutamisel. Termilised olekuparameetrid: erimaht, absoluutne rõhk ja abs. Temperatuur. 1) Erimaht ­ aine massiühiku maht (v) [ m³/kg] 2) Rõhk ­ Pinnaühiku normaali suunasmõjuv jõud (p) [Pa, N/m², mmHg, atm, bar, psi] 3) Temperatuur ­ Absoluutne temperatuur (T) [K] Energeetilised olekuparameetrid: Siseenergia, entalpia, entroopia 1) Siseenergia (U) [J] 2) Entalpia (H) [J] 3) Entroopia (S) [J/K] 7. Absoluutse rõhu , ülerõhu ja alarõhu mõiste. Absoluutne rõhk ­ gaasi tegelik rõhk ja saadakse siis kui rõhu mõõtmisel võtta 0-nivooks absoluutne vaakum. Ülerõhk ­ rõhk mis on kõrgem atmosfääri rõhust. Nim. ka manomeetriline rõhk Alarõhk ­ rõhk mis on madalam atmosfääri rõhust. Nim. ka vaakummeetriline rõhk. 8. Temperatuuri skaalad.

Soojustehnika
59 allalaadimist
thumbnail
90
pdf

Soojustehnika eksami küsimused

) ei muutu, kui süsteem mõjutab teda soojuslikul, mehaanilisel või mõnel muul viisil. Termodünaamilise süsteemi üks lihtne näide on gaas balloonis. Süsteemi ja ümbruskeskkonna vaheline piir on ballooni sisepind, ümbruskeskkonna moodustab aga balloon ise koos seda ümbritseva õhuga. Termodünaamiline süsteem võib olla homogeenne või heterogeenne. Homogeenses süsteemis on aine füüsikalis-keemilised omadused kõigis punktides ühesugused. Sellise süsteemi näiteid on gaas, vesi ja jää. Heterogeenseks nimetatakse süsteemi, mille üksikosade füüsikalis-keemilised omadused on erisugused. Seejuures on süsteemi osad üksteisest eraldatud lahutuspinnaga. Heterogeenne süsteem on näiteks vesi ja jää, aur ja vesi, aur ja jää. Termodünaamiline süsteem võib olla kas materiaalselt suletud või materiaalselt avatud. Süsteem on materiaalselt suletud, kui puudub aine juurdevool süsteemi või äravool sellest, sest siis ei

tehnomaterjalid
121 allalaadimist
thumbnail
22
docx

Füüsikalised suurused ja nende etalonid

pärisuunaski ja jõuab algolekusse tagasi (gaasi lõpmata aeglane paisumine või kokkusurumine silindris). Mittepööratava protsessi korral pole olekute vastupidises järjekorras läbimine võimalik. Kõik reaalsed protsessid on rangelt võttes mittepööratavad ( leiab aset kui kaks (lõplikul määral) erineva temperatuuriga keha kontakti viia) o Süsteemi siseenergia ja selle muut Süsteemi siseenergia- keha koostisosakeste ja väljade vastastikmõju ning osakeste liikumise energia summat nim siseenergiaks U=3/2m/MRT (üheaatomilise ideaalse gaasi siseenergia) ja selle muut- Kõikidest siseenergia liikidest muutub soojusnähtustes vaid molekulide kineetiline ja nende vastastikmõju potensiaalne energia o Temperatuur (+ mõõtühikud)

Füüsika
37 allalaadimist
thumbnail
66
docx

Füüsika I konspekt

2. ehk isohooriline protsess ehk Charles’i [šarl’i] seadus, mida kirjeldab seos p1 p2 p    const T1 T2 T T  const p  f (V ) 3. ehk isotermiline protsess ehk Boyle’i-Marionette’i seadus, mida kirjeldab seos p1V1  p2V2  pV  const 7. SISEENERGIA. TÖÖ GAASI PAISUMISEL JA KOKKUSURUMISEL. ENERGIA JAOTUS VABADUSASTMETE JÄRGI. Keha siseenergiaks nimetatakse keha molekulide kineetilise ja potentsiaalse energia summat. Siseenergia levimist ühelt kehalt teisele nim soojusülekandeks. Soojusülekandes levib siseenergia soojemalt kehalt või kehaosalt külmemale. Seejuures soojema keha siseenergia väheneb ja külmema keha siseenergia suureneb. Termodünaamika I printsiip: Gaasile antav soojushulk on võrdne siseenergia

Füüsika
72 allalaadimist
thumbnail
17
docx

KESKKONNAFÜÜSIKA KT-Teooria

Osakesed võnguvad, liiguvad natuke, saavad kohti vahetada. Võtab anuma kuju, ei täida anumat. Vähe kokkusurutav – vaba ruumi osakeste vahel on vähe, st ruumala on püsiv. Voolav Isotroopne – omadused ei sõltu suunast. Gaas Osakesed on üksteisest kaugel ja asetsevad ebaregulaarselt. Osakesed võnguvad ja liiguvad vabalt suurtel kiirustel. Võtab anuma kuju, selle täites. Kokkusurutav – osakeste vahel on palju vaba ruumi. Voolab kergelt. Kuna osakesi on hõredalt, siis gaas on enamasti läbipaistev. Sõna gaas tuleb kas kreeka keelest sõnast „kaos“ või sõnast „gahst“ e. vaim Plasma Puudub kindel ruumala ja kuju. Neutraalsete aatomite, elektronide ja ioonide segu (Aatomid lagunevad – elektronid eemalduvad). Juhivad elektrit (gaasid on enamasti elektriisolaatorid). Esineb kõrgetel temperatuuridel ja rõhkudel, gaasi erikuju. Esineb näiteks Päikesel ja teistel tähtedel. Välk ja virmalised on plasma. Elav tuli?

Keskkonafüüsika
3 allalaadimist
thumbnail
30
docx

Füüsika eksam vastustega: liikumine

mc 2 E kin   m0 c 2 2 v 1 c2 Kineetiline energia , m0c2 on seisuenergia (keha koostisosade vastastikuse seose ja sisemise liikumise energia). 27.Ideaalse gaasi olekuvõrrand. Ideaalne gaas on selline gaas, mille osakesed on punktmassid ning mille vahel vastastikmõju puudu. Ideaalgaasi võrrand seob omavahel gaasi olekuparameetreid. pV=nRT, kus p-gaasi rõhk(Pa), V-gaasi ruumala (m3), n-gaasi moolide arv (mol), R-universaalne gaasikonstant 8,314 J/K*mol, T-gaasi temperatuur (K) 3   kT 2 kulgliikumise energia 28.Isoprotsessid. Isoprotsessiks nim oleku muutumist, milles mingi olekut iseloomustav parameeter jääb konstantseks.

Füüsika
47 allalaadimist
thumbnail
13
doc

Mehaanika ja soojus

arvuga N: mo=m/N=m/NA=M/NA Molekul koosneb kindlast arvust üksteisega seotud keemiliste elementide aatomitest. Kõige väiksem osake, mis kannab selle aine omadusi. Pindpinevus ­ vee pinda võib vaadelda elastse kilena (vedeliku pinnamolekulidel on suurem pot energia). Kapillaarsus ­ pinnaenergia arvelt tõuseb märgav vedelik torus üles. Difusioon ­ erinevate ainete segunemine soojusliikumise tagajärjel 2. Ideaalne gaas, P, T põhivõrrand Id. gaas ­ s.o. reaalse gaasi lihtsaim mudel. Selle mudeli aluseks on järgmised eeldused: 1) molekulide endi ruumala on anuma ruumalaga võrreldes kaduvväike (Id.gaasi on võimalik kokku suruda nii, et V=0); 2) molekulide vahel ei mõju tõmbejõude; 3) molekulide omavahelisel põrkumisel ja põrkumisel vastu anuma seina mõjuvad neile tõukejõud. 4) arvestatakse ainult kineetilist energiat, potentsiaalsest ei saa rääkida.

Füüsika
95 allalaadimist
thumbnail
15
doc

Füüsika I eksami piletid

väiksem on vr. vk=v =0 vf(v)dv=8kT/m. vrk=v2 = =0 v2f(v)dv=3kT/m. §65. Baromeetriline valem. Atm.rõhk mingil kõrgusel h on tingitud kõrgemal asuvate gaasikihtide kaalust. Tähistame rõhu kõrgusel h tähega p. Siis rõhk kõrgusel h+dh on p+dp, kusjuures dh pos.-ele väärtusele vastab dp neg. väärtus, sest kõrgemal asuvate atmkihti-de kaal ning järelikult ka rõhk vähenevad kõrgusega. Rõhkude p ja p+dp vahe on võrdne ühikulise põhjapindalaga silindris kõrgusega dh sisalduva gaas kaaluga: p-(p+dp)=gdh, kus on gaasi tihedus kõrgusel h. Siit dp=-gdh. Kui temp. on konst., annab võrrandi dp/p=-µg/RT*dh integreerimine lnp=-µgh/RT+lnC. kus C on konst. Eeldusel, et temp. kõrgusega ei muutu, avaldub rõhu sõltuvus kõrgusest valemiga p=p 0e-µgh/RT. Seda seost nim. baromeetriliseks valemiks ja sellest on näha, et õhk langeb kõrgusega seda kiiremini mida raskem on gaas ning mida madalam on temp

Füüsika
1097 allalaadimist
thumbnail
25
doc

Termodünaamika õppematerjal

(2) Eksisteerib kindel kvantitatiivne seos molekulide kollek-tiivi omaduste ja üksikmolekuli iseloomustava füüsikalise parameetri keskväärtuse vahel. (3) Aine makroskoopiliste ning mikroskoopiliste omaduste vaheliste seoste leidmiseks on vaja teada vaid üksikmolekule iseloomustavate suuruste teatud tõenäoseid väärtusi. Molekulaarkineetilises teoorias kasutatakse ideaalse gaasi mudelit. Sisuliselt on ideaalne gaas antud definitsiooniga: (i) Ideaalse gaasi molekulid on punktmassid, mille kogu-ruumala võrreldes gaasi sisaldava anuma ruumalaga on kaduvväike, s.t. seda ei arvestata. (ii) Ideaalse gaasi molekulide vahel puuduvad tõmbe- ja tõukejõud (molekulaarjõud), väljaarvatud molekulide põrgete korral ilmnevad lühiajalised tõukejõud. Põrked on absoluut-selt elastsed. Paljud kergemad gaasid alluvad normaaltingimustel küllalt hästi ideaalse gaasi mudelile.

172 allalaadimist
thumbnail
21
docx

Soojustehnika konspekt

Ringprotsesse saab liigitada temperatuur taseme järgi: · Kõrge temperatuuriga protsessiga, kus maksimaalne temperatuur on üle 1000co. · Madalat temperatuuriga protsessid, kus kasutatakse madalal temperatuuril keevaid vedelikke, seal on maksimaalne temperatuur on 30o-70o . Madalatemperatuurilised on soojustransformaatorid protsessid. Tähtsamateks termodünaamika mõisteteks loetakse: 1) Töö ­ L; [J]; l[J/kg] Energiaühik ­ ,,J" 2) Soojus ­ Q[J] 3) Siseenergia ­ U[J] Gaasi või auru siseenergi · Mass · Raskusjõud · Kaal · Ainehulk · Moolmass · Moolmaht Tehnilises termodunaamikas vaadeldakse: Massi, kui keha inertsus omaduste karakteristikut (see tähendab kui inertsi iseloomustajat ja tema mõõtu) seda massinimetatakse inertseks massiks. Vaadeldakse massi konstantse suurusena, määratakse kaalumise teel, kussjuures see mass tasakaalustatakse kalibreeritud vihtide raskustega

Soojustehnika
134 allalaadimist
thumbnail
23
doc

Füüsika arvestus 2011 teooria

vedeliku või gaasi kaaluga. Üleslükkejõud: Fü = δgV 39.Sirgliikumise hetkkiirus ja –kiirendus Hetkkiiruseks nimetatakse keha kiirust teatud ajahetkel. V→= Δs/Δt Hetkkiirendus on selline kiirendus mis on kiiruse tuletis aja järgi ehk nihke teine tuletis aja järgi. Hetkkiirendus: a→ = 40.Ühtlaselt muutuva põõrlemise põõrdenurga ja lõppkiiruse valemid Põõrdenurk on „elastse joone” puutuja tõusunurk φ 41.Ideaalne gaas. Molekulaarkineetilise teooria põhivõrrand (sisu) Ideaalne gaas on reaalse gaasi erijuht. Ideaalse gaasi puhul on pV = const st. rõhu ja ruumala korrutis on jääv. Ideaalse gaasi siseenergia sõltub ainult temperatuurist (Joule'i tingimus). Ideaalse gaasi molekulide mõõtmed on tühised võrreldes nende molekulide vahelise kaugusega. Molekulid ei interakteeru üksteisega (molekulide vastasmõju seisneb ainult nende omavahelistes elastsetes põrgetes).

Füüsika täiendusõpe
18 allalaadimist
thumbnail
34
docx

Füüsika eksami konspekt

ja tahketes kehades niisama hästi kui gaasides. Helilainete edasikandumiseks peab olema mingi keskkond, seega vaakumis heli levida ei saa. Helitaset mõõdetakse detsibellides(dB). Laine on võnkumiste ruumis levimine, mida põhjustab võnkeallika võnkumine. Kui võnkeallikas võngub harmooniliselt, siis on ka tekkiv laine harmooniline. Laine põhitunnuseks on energia edasikandmine. 26,* Gaaside kineetilise energia põhivõrrand P=2/3 E*n 27*, Ideaalse gaasi olekuvõrrand. Ideaalne gaas on selline gaas, mille osakesed on punktmassid ning mille vahel vastastikmõju puudub. Ideaalgaasi võrrand seob omavahel gaasi olekuparameetreid. pV=nRT, kus p-gaasi rõhk(Pa), V-gaasi ruumala (m3), n-gaasi moolide arv (mol), 3   kT 2

Füüsika
46 allalaadimist
thumbnail
34
doc

Füüsika eksam inseneri erialadele

on võrdelises sõltuvuses temperatuurist. Ruutkeskmist kiirust saab leida ka valemiga , keskmise kiiruse saab valemist , molekulide tõenäoline kiirus . · Molekuli ruutkeskmise kiiruse valem: rakendused. · Soojusmahtuvus, erisoojus, moolsoojus: dimensioonid. soojusmahtuvus ­ soojushulk dzaulides (J), mis tõstab keha temperatuuri ühe kelvini (K) võrra. 1 kalor (cal) = 4,1868 J. erisoojus ­ soojushulk (J), mis tõstab antud aine massiühiku (kg) temperatuuri 1 K võrra. moolsoojus = soojushulk (J), mis tõstab antud aine ühe mooli temperatuurir 1 K võrra. · Vabadusastmete arv ja moolsoojuste leidmine. Üheaatomilise molekuli liikumisel on kolm vabadusastet (kiirusvektori kolm

Füüsika
381 allalaadimist
thumbnail
29
doc

Füüsika kokkuvõttev konspekt

muunduda ühest liigist teise ning kanduda Samaaegselt suhtelise pikenemisega või ühelt kehalt teisele. suhtelise survega,toimub suhteline kokkutõmbumine või suhteline Energia jäävuse seadusest järeldub, et paisumine.Kui ristlõike mõõde on d,tema energia, mille süsteem saab väljastpoolt, muut d,siis ristlõike mõõtme suhtelise peab võrduma süsteemi siseenergia muudu muut on avadatav järgmiselt ja süsteemist väljuva energia summaga (termodünaamika esimene seadus). '=d/d Seadusest järeldub, et isoleeritud süsteemi Suhteline pikideformatsioon ja suhteline siseenergia on jääv. ristlõike mõõtme deformatsioon on omavahel seotud Poissoni teguriga: Erirelatiivsusteoorias seotakse (seisu)energia ja (seisu)massi jäävuse seadus üheks

Füüsika
405 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun