Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse Registreeri konto

TUUMAFÜÜSIKA (0)

5 VÄGA HEA
Punktid
TUUMAFÜÜSIKA #1
Punktid 50 punkti Autor soovib selle materjali allalaadimise eest saada 50 punkti.
Leheküljed ~ 1 leht Lehekülgede arv dokumendis
Aeg2013-02-05 Kuupäev, millal dokument üles laeti
Allalaadimisi 25 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor fersa Õppematerjali autor

Märksõnad

Sarnased õppematerjalid

thumbnail
5
doc

Tuumafüüsika

Tuumafüüsika · Radioaktiivsuse avastamine Radioaktiivsus on aatomituumade iseeneslik muunudumine, selle avastas juhuslikult Becquerel aastal 1896. Ta avastas, et kui teatud aineid valgustada, siis nad kiirgavad pärast (vahel ka röntgenkiiri). Ta võttis ained ja viis päikse kätte, et päikese kiired langeksid peale. Siis pani ta need ained fotoplaadile, ilmutas plaadi ja seal oli kiirgus nähtav. Ainete hulgas olid ka uraanisoolad. Ühel päeval aga päikest polnud, ta pani uraanisoolad koos fotoplaadiga sahtlisse ja unustas need sinna. Hiljem leidis need uuesti ja otsustas plaadi ilmutada. Tema üllatuseks oli näha, et aine kiirgas ise. Becquerel leidis seega,et uraan suudab õhku ioniseerida ning uraanist tulev kiirgus ajas ei muutu. Kiirgus on omane uraanile (elemendile) mitte ühendile. Ehk siis kõik ühendid kus on uraan on radioaktiivsed. Curie'd otsisid erinevaid aineid mis kiirgavad, leidsid ka täiesti uue keemilise elemendi polloonium. Võtsid kasutusele mõiste

Füüsika
thumbnail
2
doc

Tuumafüüsika

Kütuseks on liitium-deuteriid:LiD, mis kujutab endast tahket ainet. Termotuumareaktsiooni selles paneb tööle tuumapomm. 17. Mis on sünteesireaktsioonid - termotuumareaktsioon, näide loodusest? Termotuumareaktsioon on kergete tuumade ühinemine kõrgetel temperatuuridel. 2 2 4 1 H + 1 H = 2 He + energia. Praktikas raske teostada- vaja kõrget temperatuuri. Looduses: toimub tähtedes. Elu maal võlgneb olemasolu ainult tänu termotuumareaktsioonile. 18. Tuumafüüsika rakendus meditsiinis ja arheoloogias? Meditsiinis: Märgitud aatomite meetod: *Nt tehti kindlaks, et organism omandab rauda 2659 Fe ainult siis, kui rauavarud on ammendatud (hemoglobiinikoostises) *radioaktiivne naatrium ­ uuritakse vereringe omadusi *gammakiirgus ­ vähkkasvajate raviks Arheoloogis: radioaktivse süsiniku meetod, kasutatakse isotoopi 614C Kui organism sureb, hakkab selle osakaal vähenema. Võrreldakse värske süsiniku ja arheoloogilise leiu süsiniku radioaktiivsust

Füüsika
thumbnail
2
doc

Tuumafüüsika

1.Tuuma ehitus.nukleon. Tuum: *on kerataoline keha aatomi keskmes,mille ümber tiirlevad elektronid *mõõtmed 10- 15 m *koosneb prootonitest ja neutronitest *nukleon on prootoni ja neutroni ühisnimetus *prootonil positiivne laeng *neutron on elektriliselt neutraalne tuuma osake Tuuma ehitus: *tuuma osakesed asuvad teatud energiatasemetel *ühel energiatasemel saab olla piiratud arv osakesi *prootonite ja neutronite energiatasemed on üksteisest sõltumatud *prootonite seoseenergia on väiksem kui neutronitel *seoseenergia-energia, mis oleks vaja osakesele anda,et teda täielikult tuumast vabastada 2.Isotoobid *Ühel elemendil võib olla erineva massiarvuga tuumi ehk isotoope. *massiarv-neutronite ja prootonite koguarv (A=Z+N)(Sama Z juures võib N, seega ka A olla erinev) 3.Stabiilse tuuma tingimused 1.Tuuma võimalik suurus on piiratud 2.Stabiilsel tuumal on energiatasemed täitunud järjest 3.Neutroneid on veidi rohkem kui prootoneid 4.Radioaktiivsus,radioaktiivne kiirgus *radioa

Füüsika
thumbnail
4
rtf

Tuumafüüsika

TUUMAFÜÜSIKA SISSEJUHATUS: Aatomit tervikulikult uurides, tegeldi elektron katte ehituse... Hiljem hakati tegelema ka aatomituuma ehituse ja seal toimuvate seaduspärasuste uurmisega Samal aastal püstitas Rutherford hüpoteesi ,et vesinike aatomi tuum on kõigi teiste keemilistelementide tuumade koostises. Seda osakest hakatigi nim. Prootoniks. 1920.A ennustas Rutherford ,et tuumas on ka laenguta osakesi. Neutron ise avastati 1932.a. Chadwick poolt .Füüsikud avastasid ,et tuumade lagunemisel vabaneb ,suurel hulgal energies , mida võiks kasutada energia tootmiseks ,kui ka aatompommi loomiseks. 1942a. Läks käiku esimene TUUMAREAKTOR Chicagos. 1945 a. visati esimene pomm Hiroshimale ja Nagasaki . 1954 a. hakkas tööle esimene aatomi Elektri jaam . TUUMAJÕUD : Nii nagu aatomit tervikuna , nii on ka tuumad väga püsivad moodustised . Selle selgitamisel sattsuid ,aga teadlased raskustesse ,sest ei osatus arusaada mis hoiab tuuma nii stabiilselt ol

Füüsika
thumbnail
5
docx

Tuumafüüsika

ISOTOOBID Isotoobid kujutavad endast ühe ja sama prootonite arvuga (Z), kuid erinevate massiarvudega (A) tuumi, st erinevate neutronite (N) arvuga tuumi. Isotoobid on ühesuguste keemiliste omadustega, kuid nad erinevad radioaktiivsuse suhtes. Isotoobid on Mendeleejevi tabelis ühes ja samas ruudus. Igal elemendil on isotoobid, kuid kõikidel elementidel pole nad stabiilsed. Vesinikul on kolm isotoopi aatommassidega 1,2 ja 3. Isotoopi aatommassiga 2 nim DEUTREERIUMIKS, tema tuum sisaldab 1 prootonit ja 1 neutronit. Isotoopi aatommassiga 3 nim TRIITIUMIKS, tema tuum sisaldab 1 prootonit ja 2 neutronit. Deuteeriumi ühinemisel hapnikuga saame nn raske vee. NIHKEREEGEL Radioaktiivsed muundumised alluvad nn nihkereeglile, mille sõnastas inglise füüsik Soddi. 1) alfa ­ lagunemisel (eraldub alfa-osake, st He tuum) väheneb elemendi mass nelja aatommassi ühiku (2 prootoni + 2 neutroni mass) ja laeng 2 laenguühiku võrra (2 prootoni laeng). Selle tulemusel nihkub element Mendel

Füüsika
thumbnail
3
doc

Tuumafüüsika

1. Kirjelda järgmisi aatomimudeleid: a. Daltoni piljardipalli mudel ­ aatomid on tahked ja jagamatud b. Thomsoni ploomipudingi mudel - positiivselt laetud kera, mille sees paiknevad elektronid. c. Rutherfordi õhupallimudel - keskel on positiivse laenguga tuum ja selle ümber tiirlevad erinevatel orbiitidel elektronid d. Bohri planetaarne mudel ­ keskel tuum (+), elektronid (-) tiirlevad ümber tuuma erinevatel orbiitidel ühel ja samal tasapinnal, ühel orbiidil võib olla ka mitu elektroni e. Kaasaegne pilvemudel - Tuuma ümber liikuvad elektronid moodustavad elektronpilved, mille erinevates osades on elektroni leiutõenäosus erinev 2. Sõnasta Bohri 2 postulaati. 1. Elektron liigub aatomis teatud kindlatel lubatud orbiitidel. Lubatud orbiidil liikudes aatom ei kiirga. 2. Elektroni üleminekul ühelt lubatud orbiidilt teisele aatom kiirgab või neelab valgust kindlate portsjonite ­ kvantide kaupa. 3. Millistest osakestest koosnevad aatomituumad? Kuidas on nende

Füüsika
thumbnail
2
docx

Tuumafüüsika

1) Aatomtuum koosneb prootonitest ja neutronitest 2) aatominumber ehk laenguarv (Z) 3) Massiarv on nukleonide (prootonite ja neutronite) koguarv aatomi tuumas. Ainult prootonite arvu aatomi tuumas näitab aatomnumber. 4) Mille poolest erinevad, sarnanevad prootonid ja neutronid? 5) Prootonid ja neutronid kokku ­ Nukleonid 6) Isotoopideks nimetatakse ühe elemendi erineva massiarvuga tuumi. Neid tähistatakse 7) Ülesanne tuuma koostise kohta 8) Radioaktiivsus ehk tuumalagunemine on ebastabiilse (suure massiga) aatomituuma iseeneslik lagunemine. Selle protsessiga kaasneb radioaktiivne kiirgus. 9) Alfa kiirgus ­ Alfakiirgus on ioniseeriv radioaktiivne kiirgus, mis tekib tuumareaktsioonide tulemusel ja koosneb alfaosakestest. Alfakiirgus on tulenevalt oma väikesest läbimisvõimest inimesele suhteliselt ohutu, ei suuda läbida isegi paberit. Beeta kiirgus- Beetakiirgus on beetaosakestest koosnev ioniseeriv radioaktiivne kiirgus, mis tekib beetalagunemise

Füüsika
thumbnail
1
doc

Tuumafüüsika

Tuumajõud - Tuumajõud on erilised jõud füüsikas. Nad mõjuvad tuumaosakeste vahel ning nad on tõmbejõud. Nad on maailma tugevaimad jõud massiosakese kohta. Tänu tuumajõududele on tuuma lõhustamine väga raske. Seoseenergia ­ nim energiat, mis on vajalik, et lõhustada tuum täielikult ükiskuteks osadeks. Kuna tuuma jõud on väga suured, siis on see energia massiühiku kohta tohutult suur. Kuna peab kehtima energiajäävuse seadus, siis peaks vastupidises protsessis osakestest moodustub (tuum)hoopis eralduma energia. Reaalsuses see energiaga eraldub. Massidefekt - Osutub, et tuuma moodustavate osakeste masside summa on alati suurem kui osakestest moodustunud tuumamass. Seda massi vahet nim massidefektiks. Eriseosenergia ­ see on seosenergia ühe massiühiku kohta. Graafikult näeme, et kõige suurema eriseosenergiaga on raua ümbruses olevad elemendid. St, nad on kõige püsivamad elemendid. Tabeli lõpuelementide vastav energia on aga väiksem, see tõttu on nad ebapüsi

Füüsika



Lisainfo

olulisemad tuumafüüsika mõisted ja valemid

Meedia

Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun