Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

Matemaatiline analüüs - valmistumine Eksamiks - sarnased materjalid

integraal, koonduv, tuletis, osatuletis, joonintegraal, tähistus, statsionaarsed, muutuja, ekstreemumite, graafik, nivoojoone, algoritm, veahinnang, geomeetriline, green, joonintegraali, definitsioonid, osatuletiste, determinant, lineaarsus, monotoonsus, määramis, ilmutamata, osatuletised, ekstreemumid, maksimumi, statsionaarne, täisdiferentsiaali
thumbnail
20
docx

Matemaatiline analüüs II. Eksami kordamisküsimuste vastused

1. Kahje muutuja funktsioonid(definitsioon, määramis- ja muutumispiirkonna definitsioon ja tähistused, näited, esitusviisid, ilmutamata kujul esituse definitsioon, graafik ja graafiku näiteid)  DEF: Kahe muutuja funktsioon f on kujutus, mis seab igale arvupaarile (x,y) ∈ D vastavusse ühe reaalarvu z= f ( x , y )  Nende punktide (x,y) hulka D, mille puhul funktsiooni väärtus on lõplik, nimetatakse selle funktsiooni määramispiirkonnaks.  Funktsiooni väärtuste z hulka Z nimetatakse funktsiooni muutumispiirkonnaks.

Matemaatiline analüüs 2
165 allalaadimist
thumbnail
3
doc

Täisprogrammi küsimustik

Vektorite skalaarkorrutis. Mitmemõõtmeline ruum kui eukleidiline ruum. Cauchy- Schwartzi võrratus. 3. Lahtised ja kinnised kerad. Punkti ümbrus. Sise- ja rajapunktid. Lahtised ja kinnised hulgad. Sidus hulk. Tõkestatud hulk. 4. Mitmemõõtmelise muutuva suuruse mõiste. Suuruse muutumispiirkond. Mitmemuutuja funktsiooni mõiste. Funktsiooni argument, sõltuv muutuja ja määramispiirkond. Mitmemuutuja funktsiooni graafik. Kahemuutuja funktsiooni graafiku geomeetriline sisu ja omadused. 5. Algebralised tehted mitmemuutuja funktsioonidega. Mitmemuutuja liitfunktsiooni mõiste. Parameetrilised pinnad. Parameetrilised kahemuutuja funktsioonid. Nivoopinnad ja nivoojooned. 6. Järjestatud mitmemõõtmelise muutuva suuruse mõiste. Mitmemõõtmelise muutuva suuruse piirväärtuse definitsioon. Piirprotsessi PA seos

Meresõidu...
27 allalaadimist
thumbnail
32
pdf

Matemaatiline analüüs II konspekt - MITME MUUTUJA FUNKTSIOONID

y=b b Analoogselt: y z = f ( x, y ) f y (a, b ) on joone y := punktis A võetud a A x = a x puutuja tõus tasandil x = a . f y (a, b ) = tan Tõestus. Funktsiooni z = f ( x, y ) graafik on pind z = f (x, y ) ( x, y ) D . Fikseerime punkti A = (a, b ) D . Vastav punkt pinnal z = f ( x, y ) on A = (a, b, f (a, b )) . z = f ( x, y ) Pinna z = f ( x, y ) ja tasandi y = b lõikejoon on x := . y = b Joon x ja tema puutuja asuvad tasandil y = b ja punktis A võetud puutuja tõus on funktsiooni

Matemaatiline analüüs II
187 allalaadimist
thumbnail
14
pdf

Matemaatiline analüüs II

Märkus 2: esimest järku osatuletistest arvutatud osatuletisi nimetatakse teist järku osatuletisteks. Tähis on wij . Neist võib edasi arvutada kõrgemat järku osatuletisi. Tähis on wij ...k . Schwarz´i teoreem ­ pidevate funktsioonide segatuletised on võrdsed fxy=fyx Tuletis antud suunas. Granient Definitsioon: kui ühikvektori tähis n-mõõtmelises ruumis on l0, siis defineeritakse funktsiooni w` w = f (P ) tuletis vektori l0 suunas kui vektori l0 ja gradientvektori grad w skalaarkorrutist: l` w` = l0 gradw l` Järeldus: Geomeetriliselt on tuletis antud suunas gradientvektori projektsioon sellele w` diferentseerimissuunale. = | gradw | cos , (l0 gradw) l` Iseloomustab: funktsiooni muutumise kiirust määramispiirkonna punkti P liikumisel vektori l0 suunas.

Matemaatiline analüüs 2
336 allalaadimist
thumbnail
12
docx

Matanalüüs II

4)Keha inertsmomendid: Kui keha jaotustihedus piirkonnas V on antud funktsiooniga f(x,y,z) suuremvõrdne 0, siis saab leida xy-, yz- ja xz- tasandi suhtes inertsmomendid järgnevalt: VALEM Keha V inertsmomendid x-, y- või z-telje suhtes leitakse vastavalt Ix=Ixy+Ixz Iy=Ixy+Iyz Iz=Ixz+Iyz Keha inertsmoment mingi telje suhtes leitakse integraalist: VALEM, kus r on punkti kaugus teljest l. Keha inertsmoment koordinaatide alguse 0 suhtes määratakse valemiga: Io=Ixz+Iyz+Ixy 11. I liiki joonintegraal, selle omadused ja arvutamine, näide Olgu xyz-ruumis R3 antud joon AB parameetriliste võrranditega x=x(t) y=y(t) z=z(t) tЄ[α;β], kus funktsioonid x, y ja z on sellel lõigul pidevalt diferentseeruvad. Selline joon on sirgestuv. Siledaks jooneks nimetatakse seda siis, kui need pidevad tuletised ei ole korraga nullid. Kui summal VALEM on maxΔsi korral olemas piirväärtus, sõltumata tema joone osadeks jaotamise viisist ja Qi valikust, siis nimetatakse seda

Matemaatiline analüüs ii
101 allalaadimist
thumbnail
9
docx

Matemaatiline analüüs II KT teooria

kaudu: Muutuja vahetuse valemist (25.3.) saame kolmekordse integraali teisendamise valemi sfäärkoordinaatidesse: Sfäärkoordinaate kasutatakse kolmekordse integraali arvutamiseks eelkõige juhul, kui integreerimispiirkond on piiratud sfääri või selle osaga, s.t. integreerimispiirkonnaks on kera või mingi kera osa. 8. Esimest liiki joonintegraal: põhjalik selgitus joonisega (vastava joone jaotus, integraalsumma jne); joone pikkus; silinderpinna pindala; joone mass. Olgu antud ruumiline kõverjoon l otspunktidega A ja B ja olgu sellel joonel defineeritud kolme muutuja funktsioon z=f(x,y,z). Käitume järgmiselt: 1. Jaotame joone l suvalisel viisil punktidega A= A0,A1,A2,..., An=B osakaarteks . Olgu sk

Matemaatiline analüüs 2
211 allalaadimist
thumbnail
55
pdf

Matemaatiline analüüs II loengukonspekt

MATEMAATLINE ANALÜÜS II 1. KORDSED INTEGRAALID Kordame kõigepealt mõningaid teemasid Matemaatlise analüüsi I osast. 1.1 Kahe muutuja funktsioonid Kui Tasndi R 2 mingi piirkonna D igale punktile x, y D seatakse ühesel viisil vastavusse arv z, siis öeldakse, et piirkonnas D on määratud kahe muutuja funktsioon z f x, y . Piirkoda D nimetataksefunktsiooni f määramispiirkonnaks. See on mingi piirkond xy-tasandil. Näide 1. Poolsfääri z 1 x2 y 2 määramispiirkonnaks on ring x 2 y2 1. Funktsiooni z ln x y määramispiirkonnaks on pooltasand y x (sirgest y x ülespoole jääv tasandi osa: vaata joonist). Kahe muutja funktsioon ise esitab pinda xyz-ruumis (ruumis R 3 ). Näide 2. Funktsiooni z x2 y 2 graafikuks on pöördparaboloid (vaata allpool olevat joonist) Kahe muutuja funktsiooni f nivoojoonteks nimetatakse jooni f x, y c Näide 3. Tüüpiline näide nivoojoo

Matemaatiline analüüs II
69 allalaadimist
thumbnail
8
pdf

Matemaatiline analüüs II 2. kollokviumi spikker

ruumala, mis pealt on piiratud funktsiooni z=f(x,y) graafikuga, alt funktsiooni z=g(x,y) graafikuga ja küljelt Definitsioon 2. Öeldakse, et kahe muutuja funktsioonil on punktis P2(x2, y2) lokaalne miinimum, kui sellel ∭∆ 𝑓(𝜌 𝑐𝑜𝑠𝜑, 𝜌 𝑠𝑖𝑛𝜑, 𝑧)𝜌 𝑑𝜑 𝑑𝜌𝑑𝑧 .Vaatleme üleminekut sfäärkoordinaatidele, kus teisendus on kujul

Matemaatiline analüüs 2
68 allalaadimist
thumbnail
16
doc

Kordamisküsimused - vastused

MATEMAATILINE ANALÜÜS II Kood YMM0012 3,5 AP KORDAMISKÜSIMUSED 1. Mitme muutujaga funktsiooni mõiste m-muutuja funktsiooniks nimetatakse kujutist, mis seab suuruse P igale väärtusele tema muutumispiirkonnast D vastavusse suuruse z ühe kindla väärtuse Mitmemuutuja funktsioon graafik Funktsiooni z=f(x1,x2,...,xm), määramispiirkonnaga D, graafikuks nimetatakse järgmist ruumi Rm+1 alamhulka ={(x1,x2,...,xm,f(x1,x2,...,xm))||P(x1,x2,...,xm)D} 2. Nivoojooned ja pinnad Kahemuutuja funktsiooni z=f(x,y) nivoojooneks nimetatakse joont, mille moodustavad piirkonna D punktid (x,y) mille korral f(x,y)=C, kus C on etteantud konstant Skalaarvälja f ehk funktsiooni f nivoopinnaks nimetatakse pinda, mis koosneb

Matemaatiline analüüs 2
511 allalaadimist
thumbnail
26
doc

Matemaatiline analüüs I - kordamine eksamiks

Näide. Olgu y = x2, fikseerime suvalise a, siis limx0 y = limx 0 [(a+ x)2 - a2) = lim x 0 (2ax + x2) = 0, seega antud funktsioon on pidev hulgal X = ( -, ), st pidev kõikjal. Kõik elementaarfunktsioonid on pidevad oma määramispiirkonnas (vt teoreem 6). Funktsiooni f katkevuspunktid ­ selle funktsiooni määramispiirkonna kuhjumispunk- tid, milles funktsioon ei ole pidev. Näide. Funktsiooni f (x) = tan x katkevuspunktid on x = ± /2, ± 3/2, ... § 3 FUNKTSIOONI TULETIS JA DIFERENTSIAAL. 1.Tuletise definitsioon. Pidevus ja diferentseeruvus Olgu antud funktsioon y = f (x) , x X. Anname argumendile x muudu x, nii et x+ x X ja vastav funktsiooni muut olgu y = f(x+x) - f(x). Definitsioon 7. Kui eksisteerib piirväärtus (lõplik või lõpmatu) y lim , x 0 x

Matemaatiline analüüs i
687 allalaadimist
thumbnail
5
doc

Matemaatilise analüüsi 2.kollokviumi

Tähistame = x + y Siis 0 x 0 ja y 0.Tingimusest saame kahe muutuja pidevuseks f(x+ x) = f(x) + fxj(x+ x) xj punktis P0(x0 , y0) tarviliku ja piisava tingimuse lim z = 0.Vektorite ~u = (u1; u2; : : : ; um) ja ~v = (v1; v2; : : : ; vm) 0 skalaarkorrutiseks nimetatakse summat ~u * ~v = u1v1 + u2v2 + : : : + umvm : Defineerida funktsiooni tuletis etteantud suunas. Gradient. Telgedesuunalised tuletised. Suunatuletise tõlgendus. Leiame funktsiooni f(x) tuletise punktis a vektori s suunas. Vektori s suunaline ühikvektor on kujul n := s / s2 = (cos , ... , cos

Matemaatiline analüüs 2
37 allalaadimist
thumbnail
22
doc

Kõrgem matemaatika

Arvupaari (m; n) nimetatakse maatriksi A mõõtmeteks. Tabelis paiknevaid arve aij nimetatakse maatriksi elementideks. i ­ reaindeks; j ­ veeruindeks. reamaatriks ­ (1 x n); veerumaatriks ­ (m x 1); ruutmaatriks ­ m = n Tähistused: maatriksi järk ­ naturaalarvude paar m x n (ridade ja veergude arv). ruutmaatriksi korral järk n (n = ridade arv = veergude arv). maatriksi liigid: nullmaatriks ­ kõik elemendid 0. tähistus teeta ruutmaatriks ­ ridade arv = veergude arv m=n diagonaalmaatriks ­ ruutmaatriks, mille kõik elemendid väljaspool peadiagonaali on 0. ühikmaatriks ­ diagonaalmaatriks, mille kõik peadiagonaali elemendid on 1. tähistus E. 2. Tehted maatriksitega (korrutamine arvuga, liitmine, lahutamine, korrutamine). Korrutamine arvuga: maatriksi korrutamisel arvuga korrutatakse kõik tema elemendid selle arvuga.

Kõrgem matemaatika
212 allalaadimist
thumbnail
273
pdf

Lembit Pallase materjalid

11. Funktsiooni pidevuse m~oiste. Tarvilik ja piisav tingimus funktsiooni pidevuseks 12. Elementaarfunktsioonide pidevus 13. L~oigul pidevate funktsioonide omadused 14. Funktsiooni katkevuspunktid 15. Funktsiooni tuletise m~oiste, selle geomeetriline ja mehhaaniline t~olgendus 1 16. Pidevus ja diferentseeruvus 17. M~onede p~ohiliste elementaarfunktsioonide tuletised 18. Diferentseerimisreeglid 19. P¨o¨ordfunktsiooni tuletis 20. Liitfunktsiooni tuletis 21. Logaritmiline diferentseerimine 22. Ilmutamata funktsiooni tuletis 23. Parameetrilisel kujul esitatud funktsiooni tuletis 24. Funktsiooni diferentsiaal 25. K~orgemat j¨arku tuletised 26. Joone puutuja ja normaali v~orrandid 27. Rolle'i teoreem 28. Cauchy teoreem 29. Lagrange'i teoreem 30. L'Hospitali reegel 31. L'Hospitali reegel teistel m¨aa¨ramatuse juhtudel 32. Taylori valem 33

Matemaatiline analüüs
808 allalaadimist
thumbnail
22
doc

Matemaatiline analüüs I - kordamine eksamiks (ainekava järgi koostatud konspekt)

Ratsionaalarvud ­ on sellised reaalarvud, mida saab esitada kahe täisarvu m ja n jagatisena nii et n n 0 . Igal ratsionaalarvul on ka lõpmatu kümnendmurdarendus ja see on alati perioodiline, tähistatakse Q Irratsionaalarvud ­ mitteperioodilised lõpmatud kümnendmurrud. Tähistus I Reaalarvud ­ hulk R, koosneb kõikidest ratsionaal- ja irratsionaalarvudest 2. Tähtsamad reaalarvude hulgad (lõik, vahemik, poollõik). Hulga X R ülemine ja alumine raja. Olgu X mingi reaalarvude hulk (X R). Hulka X nimetatakse ülalt tõkestatud hulgaks, kui leidub selline arv M, nii et x M iga x X korral. Seejuures arvu M nimetatakse hulga X ülemiseks tõkkeks.

Matemaatiline analüüs i
776 allalaadimist
thumbnail
156
pdf

Kõrgem matemaatika

. . . . . . . . . . . . . . . . 40 4.5 Tähtsad piirväärtused . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.6 Pidevad funktsioonid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.7 Funktsiooni katkevusviise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.8 Pidevate funktsioonide omadused . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5 Funktsiooni tuletis ja diferentsiaal 47 5.1 Keskmine kiirus ja hetkkiirus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.2 Tuletise definitsioon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.3 Põhiliste elementaarfunktsioonide tuletised . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.4 Diferentseerimise reeglid . . . . . . . . . . . . . . .

Kõrgem matemaatika
94 allalaadimist
thumbnail
177
pdf

ÜHE MUUTUJA MATEMAATILINE ANALÜÜS

LTMS.00.022 ÜHE MUUTUJA MATEMAATILINE ANALÜÜS Loengukursus Tartu Ülikooli loodus- ja täppisteaduste valdkonna üliõpilastele 2019./2020. õppeaasta Toivo Leiger Joonised: Ksenia Niglas Pisitäiendused 2016–20: Märt Põldvere, Natalia Saealle, Indrek Zolk, Urve Kangro 2 Sisukord

Algebra I
8 allalaadimist
thumbnail
82
docx

Matemaatiline analüüs I kordamine eksamiks

x  x (n), n  1,2,.... on kõigi naturaalarvude hulk N. Defineerida jada piirväärtus ning koonduvad ja hajuvad jadad, tuua näiteid koonduvatest ja hajuvatest jadadest. Arvu a nimetatakse jada (xn) piirväärtuseks (kirjutame kas või xn → a), kui ∀ε > 0 ∃N ∈ IN : n ≥ N ⇒ |xn − a| < ε. Kui jadal on lõplik piirväärtus, siis nimetatakse seda jada koonduvaks, mittekoonduvat jada nimetatakse hajuvaks. Kõige lihtsam koonduv jada on konstantne jada (a, a, . . . ), s.t. jada (x n), kus xn = a iga n ∈ N korral, 1/x Hajuv jada: , Tõestada lause koonduva jada piirväärtuse ühesusest (lause 2.3) Lause (Koonduva jada piirväärtuse ühesus) lim xn = a ja lim xn = b, siis a = b Tõestus: kehtigu lim xn = a ja lim xn = b Vaja näidata, et a = b  a – b = 0 [Fakt Iga ε > 0 |x| < ε  x = 0] Näitame, et iga ε > 0 |a - b| < ε Fikseerime ε > 0 Kuna lim xn = a, siis (võttes (*) e = ε/2)

Matemaatiline analüüs
54 allalaadimist
thumbnail
816
pdf

Matemaatika - Õhtuõpik

........ 39 Milleks meile arvu absoluutväärtus? ............ 121 matemaatikute keel ja žanrid ............ 42 Oskussõnad .................................................. 42 Tähed ja sümbolid .........................................43 Matemaatilised žanrid .................................. 44 OSA 3 – arvude sõbrad ja muutuja ....................................... 48 sugulased ....................................... 125 Muutuja erinevates rollides ........................... 48 jada . ................................................... 128 võrdus ja võrdsus ......................... 52 Aritmeetiline jada ........................................129 Matemaatiline võrdus ....................................54 Geomeetriline jada ...........

Matemaatika
200 allalaadimist
thumbnail
477
pdf

Maailmataju

UNIVISIOON Maailmataju Autor: Marek-Lars Kruusen Tallinn Detsember 2012 Esimese väljaande eelväljaanne. Kõik õigused kaitstud. 2 ,,Inimese enda olemasolu on suurim õnn, mida tuleb tajuda." Foto allikas: ,,Inimese füsioloogia", lk. 145, R. F. Schmidt ja G. Thews, Tartu 1997. 3 Maailmataju olemus, struktuur ja uurimismeetodid ,,Inimesel on olemas kõikvõimas tehnoloogia, mille abil on võimalik mõista ja luua kõike, mida ainult kujutlusvõime kannatab. See tehnoloogia pole midagi muud kui Tema enda mõistus." Maailmataju Maailmataju ( alternatiivne nimi on sellel ,,Univisioon", mis tuleb sõnadest ,,uni" ehk universum ( maailm ) ja ,,visioon" ehk nägemus ( taju ) ) kui nim

Karjäärinõustamine
36 allalaadimist
thumbnail
990
pdf

Maailmataju ehk maailmapilt 2015

UNIVISIOON Maailmataju A Auuttoorr:: M Maarreekk--L Laarrss K Krruuuusseenn Tallinn Märts 2015 Leonardo da Vinci joonistus Esimese väljaande kolmas eelväljaanne. Autor: Marek-Lars Kruusen Kõik õigused kaitstud. Antud ( kirjanduslik ) teos on kaitstud autoriõiguse- ja rahvusvaheliste seadustega. Ühtki selle teose osa ei tohi reprodutseerida mehaaniliste või elektrooniliste vahenditega ega mingil muul viisil kasutada, kaasa arvatud fotopaljundus, info salvestamine, (õppe)asutustes õpetamine ja teoses esinevate leiutiste ( tehnoloogiate ) loomine, ilma autoriõiguse omaniku ( ehk antud teose autori ) loata. Lubamatu paljundamine ja levitamine, või nende osad, võivad kaasa tuua range tsiviil- ja kriminaalkaristuse, mida rakendatakse maksimaalse seaduses ettenähtud karistusega. Autoriga on võimalik konta

Üldpsühholoogia
113 allalaadimist
thumbnail
343
pdf

Maailmataju uusversioon

UNIVISIOON Maailmataju Autor: Marek-Lars Kruusen Tallinn Detsember 2013 Leonardo da Vinci joonistus Esimese väljaande teine eelväljaanne. NB! Antud teose väljaandes ei ole avaldatud ajas rändamise tehnilist lahendust ega ka ülitsivilisatsiooniteoorias oleva elektromagnetlaineteooria edasiarendust. Kõik õigused kaitstud. Ühtki selle teose osa ei tohi reprodutseerida mehaaniliste või elektrooniliste vahenditega ega mingil muul viisil kasutada, kaasa arvatud fotopaljundus, info salvestamine, (õppe)asutustes õpetamine ja teoses esinevate leiutiste ( tehnoloogiate ) loomine, ilma autoriõiguse omaniku ( ehk antud teose autori ) loata. Autoriga saab kontakti võtta järgmisel aadressil: [email protected]. ,,Inimese enda olemasolu on suurim õnn, mida tuleb tajuda." Foto allikas: ,,Inimese füsioloogia", lk. 145, R. F. Schmidt ja G. Thews, Tartu 1997.

Teadus
36 allalaadimist
thumbnail
1072
pdf

Logistika õpik

Eesti Rahvusraamatukogu digitaalarhiiv DIGAR Eesti Rahvusraamatukogu digitaalarhiiv DIGAR Ain Tulvi LOGISTIKA Õpik kutsekoolidele Tallinn 2013 Eesti Rahvusraamatukogu digitaalarhiiv DIGAR Käesolev õppematerjal on valminud „Riikliku struktuurivahendite kasutamise strateegia 2007- 2013” ja sellest tuleneva rakenduskava „Inimressursi arendamine” alusel prioriteetse suuna „Elukestev õpe” meetme „Kutseõppe sisuline kaasajastamine ning kvaliteedi kindlustamine” programmi „Kutsehariduse sisuline arendamine 2008-2013” raames.

Logistika alused
638 allalaadimist
thumbnail
937
pdf

Erakorralise meditsiini tehniku käsiraamat

Erakorralise meditsiini tehniku käsiraamat Toimetaja Raul Adlas Koostajad: Andras Laugamets, Pille Tammpere, Raul Jalast, Riho Männik, Monika Grauberg, Arkadi Popov, Andrus Lehtmets, Margus Kamar, Riina Räni, Veronika Reinhard, Ülle Jõesaar, Marius Kupper, Ahti Varblane, Marko Ild, Katrin Koort, Raul Adlas Tallinn 2013 Käesolev õppematerjal on valminud „Riikliku struktuurivahendite kasutamise strateegia 2007- 2013” ja sellest tuleneva rakenduskava „Inimressursi arendamine” alusel prioriteetse suuna „Elukestev õpe” meetme „Kutseõppe sisuline kaasajastamine ning kvaliteedi kindlustamine” programmi Kutsehariduse sisuline arendamine 2008-2013” raames. Õppematerjali (varaline) autoriõigus kuulub SA INNOVEle aastani 2018 (kaasa arvatud) ISBN 978-9949-513-16-1 (pdf) Selle õppematerjali koostamist toetas Euroopa Liit Toimetaja: Raul Adlas – Tallinna Kiirabi peaarst Koostajad: A

Esmaabi
313 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun