Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Matemaatiline analüüs II. Eksami kordamisküsimuste vastused (0)

3 KEHV
Punktid

Esitatud küsimused

  • Kuidas näidata et kahe muutuja funktsiooni piirväärtus ei eksisteeri?
  • Kui y0 6 Osatuletised definitsioon tähistused Geomeetriline ja füüsikaline tõlgendus Kuidas leida osatuletisi?
  • Mis on lineariseerimine ja mis on selle idee?
  • Kuidas arvutada kahekordset integraali?
  • Kuidas arvutada joonintegraale?
  • Mis seosed need valemid annavad?
  • Kuidas neid leida?

Lõik failist

Vasakule Paremale
Matemaatiline analüüs II-Eksami kordamisküsimuste vastused #1 Matemaatiline analüüs II-Eksami kordamisküsimuste vastused #2 Matemaatiline analüüs II-Eksami kordamisküsimuste vastused #3 Matemaatiline analüüs II-Eksami kordamisküsimuste vastused #4 Matemaatiline analüüs II-Eksami kordamisküsimuste vastused #5 Matemaatiline analüüs II-Eksami kordamisküsimuste vastused #6 Matemaatiline analüüs II-Eksami kordamisküsimuste vastused #7 Matemaatiline analüüs II-Eksami kordamisküsimuste vastused #8 Matemaatiline analüüs II-Eksami kordamisküsimuste vastused #9 Matemaatiline analüüs II-Eksami kordamisküsimuste vastused #10
Punktid 50 punkti Autor soovib selle materjali allalaadimise eest saada 50 punkti.
Leheküljed ~ 10 lehte Lehekülgede arv dokumendis
Aeg2015-02-10 Kuupäev, millal dokument üles laeti
Allalaadimisi 165 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor Liis Kullamaa Õppematerjali autor
kahe muutuja funktsioonid, määramis- ja muutumispiirkonnad, nivoopind, kolme muutuja funktsioonid, Kuidas näidata, et kahe muutuja funktsiooni piirväärtus ei eksisteeri, mitme muutjua funktsiooni pidevus, osatuletised, ekstreemumid, statsionaarne punkt, lokaalsete ja globaalsete ekstreemumite leidmise algoritm, pinna puutujatasandi võrrand, täisdiferentsiaali valem, gradient, tuletis suvalise ühikvektori suunas, kahekordsed integraalid, üleminek polaarkoordinaatidele, kolmekordse integraali omadused, üleminek silinderkoordinaatidele, üleminek sfäärikoordinaatidele, kolmekordse integraali rakendused, joonintegraalid, Green'i valem, joonintegraali rakendused, pindintegraalid, arvread, rea koonduvuseks tarvilikud tingimused, geomeetriline ja harmooniline rida, positiivsete arvuridade koonduvustunnused, vahelduvate märkidega rea koonduvustunnused, absoluutselt koonduv rida, tingimisi koonduv rida, funktsionaalrida, Taylori rida, MacLaureni rida, astmerida, Fourier'i ridade rakendusi

Sarnased õppematerjalid

thumbnail
14
pdf

Matemaatiline analüüs II

Mitmemõõtmelise ruumi mõiste Def: On antud n reaalarvu x1...xn ja nende järjestatud jada (x1...xn)(-punkt) ­ seda nim n- mõõtmelise ruumi punktiks. Rn={(x1,...,xn) | xi R, i=1,...,n}, P(x1,...,xn) ­ punkt koordinaatidega xi n=1: R1={P(x1) | x1 R} geom. sirge n=2: R2={P(x1,x2) | x1,x2 R} geom. tasand n=3: R3={P(x1,x2,x3) | x1,x2,x3 R} geom. ruum Punkt A on piirkonna D sisepunkt, sel korral kui tal leidub ümbrus, mis sisaldub piirkonnas D. Punkt A on piirkonna D rajapunkt sel korral kui iga tema ümbrus sisaldab nii piirkonna D kui ka piirkonda mittekuuluvaid punkte. Piirkond D on lahtine, kui ta koosneb sisepunktidest. Piirkond D on kinnine, kui ta koosneb nii sise- kui ka rajapunktidest. Mitme muutuja funktsiooni mõiste Def: nMF f:RnR:P(x1,...,xn) Rn a w=f(P) f(x1,...,xn) R Kujutlus, mis seab n-mõõtmelise ruumi punktidele P vastavusse lõpliku reaalarvu w=f(P), nim n- muutuja funktsiooniks. Geom ­ hüperpind n+1-mõõtmelises ruumis. Füüsikaliselt on nMF skalaarv�

Matemaatiline analüüs 2
thumbnail
16
doc

Kordamisküsimused - vastused

MATEMAATILINE ANALÜÜS II Kood YMM0012 3,5 AP KORDAMISKÜSIMUSED 1. Mitme muutujaga funktsiooni mõiste m-muutuja funktsiooniks nimetatakse kujutist, mis seab suuruse P igale väärtusele tema muutumispiirkonnast D vastavusse suuruse z ühe kindla väärtuse Mitmemuutuja funktsioon graafik Funktsiooni z=f(x1,x2,...,xm), määramispiirkonnaga D, graafikuks nimetatakse järgmist ruumi Rm+1 alamhulka ={(x1,x2,...,xm,f(x1,x2,...,xm))||P(x1,x2,...,xm)D} 2. Nivoojooned ja pinnad Kahemuutuja funktsiooni z=f(x,y) nivoojooneks nimetatakse joont, mille moodustavad piirkonna D punktid (x,y) mille korral f(x,y)=C, kus C on etteantud konstant Skalaarvälja f ehk funktsiooni f nivoopinnaks nimetatakse pinda, mis koosneb piirkonna D punktidest (x,y,z) mille korral f(x,y,z)=C, kus C on etteantud konstant. 3. Mitme muutuja funktsiooni piirväärtus ja pidevus Mitmemuutuja funktsiooni piirväärtus m-muutuja funktsioonil f on piirväärtus b punktis A kui suvalises piirprotsessis PA, mis rahulda

Matemaatiline analüüs 2
thumbnail
9
docx

Matemaatiline analüüs II KT teooria

1. Kahekordne integraal: põhjalik selgitus (vastava piirkonna jaotus, integraalsumma definitsioon jne). Vaatleme xy-tasandil joonega L piiratud kinnist piirkonda D. Olgu antud pidev funktsioon z=f(x,y). Jaotame piirkonna D mingite joontega n osaks: s1, s2, s3,..., sn, mida nim. osapiirkondadeks. Uute sümbolite kasutuselevõtmise vältimiseks mõistame s1,... ,sn all mitte ainult vastavaid osapiirkondi, vaid ka nende pindasid. Võtame igas osapiirkonnas s1 (selle sees või rajajoonel) mingi punkti P1, saades nii n punkti: P1, P2, P3,..., Pn. Tähistame antud funktsiooni z=f(x,y) väärtusi valitud punktides sümbolitega f(P 1),...,f(Pn) ja moodustame korrutiste summa, mille liikmeteks on f(P1)s1: Summat nim. funktsiooni z=f(x,y) integraalsummaks üle piirkonna D. Kui piirkonna D igas punktis f0, siis saab iga liidetavat f(Pi)si

Matemaatiline analüüs 2
thumbnail
32
pdf

Matemaatiline analüüs II konspekt - MITME MUUTUJA FUNKTSIOONID

Kordamine eksamiks aines matemaatiline analüüs II (2004/2005 õa kevad) §1. MITME MUUTUJA FUNKTSIOONID 1. Ruum R m , hulgad selles ruumis Def. Kõigi m reaalarvust koosnevate järjestatud süsteemide P = ( x1 ,..., x m ) hulka nimetatakse m-mõõtmeliseks ruumiks. Def. Kui m-mõõtmelises ruumis defineeritakse süsteemide P = ( x1 ,..., x m ) ja Q = ( y1 ,..., y m ) m

Matemaatiline analüüs ii
thumbnail
20
docx

Kõrgem matemaatika II eksamimaterjal

Vektorruum Mittetühja hulka V nimetatakse vektorruumiks üle reaalarvude hulga R, kui sellel hulgal on defineeritud lineaarsed tehted: hulga V elementide liitmine ja korrutamine skalaaridega nii, et on täidetud järgmised tingimused: hulk V on kinnine elementide liitmise suhtes ja hulk V on kinnine skalaariga korrutamise suhtes Vektorruumi 1) leidub nullelement omadused 2) iga elemendi a korral leidub tema vastandelement ­a 3) (a+b)+c=a+(b+c) 4) a+b=b+a 5) k(a+b)=ka+kb 6) (k+l)a=ka+la 7) (kl)a=k(la) 8) 1a=a Vektorruumi Vektorruumi alamruumiks nimetatakse vektorruumi V mittetühja alamhulka U, alamruum kui U on vektorruumi V tehete suhtes vektorruum üle reaalarvude hulga R Lineaarkate

Kõrgem matemaatika ii
thumbnail
7
docx

Majandusmatemaatika teooria

Majandusmatemaatika teooria 1.Mis on funktsioon? Kui hulga X igale elemendile x on seatud vastavusse kindel element y hulgast Y, siis öeldakse, et hulgal X on defineeritud funktsioon. Mis on sõltumatu muutuja, sõltuv muutuja? Elementi x nimetatakse sõltumatuks muutujaks ehk argumendiks, elementi y sõltuvaks muutujaks ehk (elemendi x) kujutiseks. Sõltumatu muutuja - algebra: Valemis iga muutuja, mille väärtus ei sõltu ühestki teisest muutujast. statistika: Muutuja, mida eksperimentide seeria käigus muudetakse. Sõltuv muutuja - algebra: Valemis muutuja, mille väärtus sõltub ühest või enamast teisest muutujast. statistika: Mõõdetav suurus, mis näitab kohtlemise efektiivsust. 2. Mis on funktsiooni määramispiirkond? Hulka X nimetatakse funktsiooni määramispiirkonnaks, määramispiirkond on funktsiooni argumendi nende väärtuste hulk, mille korral funktsiooni väärtus on defineeritud. Funktsiooni f sisendväärtuste hulka X nimetatakse funkts

Majandusmatemaatika
thumbnail
26
pdf

Matemaatilise analüüsi kollokvium nr.1

1. Arvrea mõiste. Arvrea osasumma ja koonduvus. Näiteid koonduvate ja hajuvate arvridade kohta. Avaldist , kus on reaalarvud, nimetatakse arvreaks. Selle rea esimese liikme summat nimetatakse selle rea -ndaks osasummaks, st. Eeltoodud rida nimetatakse koonduvaks, kui selle rea osasummade jada { } on koonduv, st , kusjuures suurust S nimetatakse selle rea summaks. Kui ei eksisteeri lõplikku piirväärtust siis nimetatakse seda rida hajuvaks. Näide 1. Uurime rea koonduvust. Et siis , seega see rida on hajuv. Näide 2. Uurime rea koonduvust. Tegu on positiivse arvreaga, sest Võrdleme seda rida geomeetrilise reaga , see geomeetriline rida on koonduv, sest ja . Et

Matemaatiline analüüs 2
thumbnail
177
pdf

ÜHE MUUTUJA MATEMAATILINE ANALÜÜS

LTMS.00.022 ÜHE MUUTUJA MATEMAATILINE ANALÜÜS Loengukursus Tartu Ülikooli loodus- ja täppisteaduste valdkonna üliõpilastele 2019./2020. õppeaasta Toivo Leiger Joonised: Ksenia Niglas Pisitäiendused 2016–20: Märt Põldvere, Natalia Saealle, Indrek Zolk, Urve Kangro 2 Sisukord 1 Reaalarvud 6 1

Algebra I




Meedia

Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun