Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

Kategooria matemaatiline analüüs 2 - 38 õppematerjali

Matemaatika >> Matemaatiline analüüs 2
thumbnail
14
doc

Teooria vastused II

1) Mitmemõõtmelise ruumi ja selle punkti mõisted. Kaugus mitmemõõtmelises ruumis. Kauguse omadused. Parameetrilised jooned. · Mitmemõõteliseks ruumiks nimetakse hulka , mille elementideks on kõik reaalarvust koosnevad järjestatud süsteemid ( a1, a2, ..., an). · Mitmemõõtmelise ruumi punktiks nim mitmemõõtmelise ruumi ( a1, a2, ..., an) süsteemi A=( a1, a2, ..., an). · Kaugus mitmemõõelises ruumis. Kui A=( a1, a2, ..., an) ja B=( b1, b2, ..., bn) siis |AB|= (a1-b1)+ (a2-b2)+ ...+ (an-bn) · Kauguste omadused: A=B siis ja ainult siis, kui |AB|=0 |AB|=|BA| |AB| |AC|+|CB| · Parameetrilised jooned ruumis Rm. Olgu lõigul [T1, T2] antud m funktsiooni x1 = 1(t), x2 = 2(t), . . . , xm = m(t). Vaatleme nende funktsioonidevõrranditest moodustatud süsteemi ...

Matemaatika → Matemaatiline analüüs 2
335 allalaadimist
thumbnail
35
pdf

Mitmemuutuja funktsioonid

MITME MUUTUJA FUNKTSIOON 1. Punkti ümbrus. Kinnine ja lahtine piirkond. Mitme muutuja funktsioon ja selle määramispiirkond. Def. 1.1. ( 0 0 )0 Punkti P x1 , x 2 ,..., x n ümbruseks n-mõõtmelises ruumis R n nimetatakse punktide hulka { U ( P ) , mis rahuldavad tingimust U ( P ) = Q( x1 , x 2 ,..., x3 ) R n ( P, Q ) < , kus } ( P, Q ) = PQ = (x1 - x10 ) + (x 2 2 - x 20 ) 2 ( + ... + x n - x n0 ) 2 Def. 1.2. Piirkonnaks D kahemõõtmelises ruumis nimetatakse selle ruumi osa, mis on piiratud mingi joonega L, mida nimetatakse rajajooneks. Kolme- või enamamõõtmelise ruumi piirkonnaks D ...

Matemaatika → Matemaatiline analüüs 2
240 allalaadimist
thumbnail
0
zip

Kordamisküsimused II

docstxt/123506282545510.txt

Matemaatika → Matemaatiline analüüs 2
174 allalaadimist
thumbnail
0
jpg

Kontrolltöö variant

docstxt/1233681769774.txt

Matemaatika → Matemaatiline analüüs 2
341 allalaadimist
thumbnail
0
zip

Eksami piletid

docstxt/12336949666461.txt

Matemaatika → Matemaatiline analüüs 2
286 allalaadimist
thumbnail
18
pdf

Määratud integraal

5 M¨ a¨ aratud integraal 5.1 M¨ a¨ aratud integraali mo ~iste Olgu funktsioon y = f (x) m¨a¨aratud l~oigul [a; b]. Jaotame l~oigu [a; b] suvalisel viisil punktidega x1 , x2 , ... xn-1 n osal~oiguks, kusjuures a = x0 < x1 < x2 < . . . < xk-1 < xk < . . . < xn = b. Tekkinud osal~oigud on [xk-1 ; xk ], kus k = 1, 2, . . . , n. T¨ahistagu xk = xk - xk-1 k-nda osal~oigu pikkust. Edasi valime igalt osal~oigult t¨aiesti suvalise punkti k [xk-1 ; xk ], k = 1, 2, . . . , n, ja moodustame korrutised f (k )xk . Liites need korrutised, saame summa n sn = f (k )xk , k=1 mida nimetatakse funktsiooni f (x) integraalsummaks l~oigul [a; b]. Jaotuspunktid x1 , x2 , . . . on...

Matemaatika → Matemaatiline analüüs 2
176 allalaadimist
thumbnail
14
pdf

Matemaatiline analüüs 2 - Janno - teooria

Matemaatiline anal¨ uu¨ s II 1. osa 1) Mitmemõõtmelise ruumi ja selle punkti mõisted. Kaugus mitmemõõtmelises ruumis. Kauguse omadused. Parameetrilised jooned. Mitmem~ o~ otmelise ruumi definitsioon. Hulka, mille elementideks on k~oik m reaalarvust koosnevad j¨arjestatud s¨ usteemid (a1 , a2 , . . . , am ), nimetatakse m- m~o~ otmeliseks ruumiks, s¨ usteemi A = (a1 , a2 , . . . , am ) selle ruumi punktiks ja arve a1 , a2 , . . . , am punkti A koordinaatideks. m-m~ o~ otmelist ruumi t¨ahistame umboliga Rm . s¨ Ruumi Rm punkte A = (a1 , a2 , . . . , am ) ja B = (b1 , b2 , . . . , bm ) nimetatakse v~ ordseteks ja kirjutatakse A = B, kui nende koordinaadid on v~ordsed, st a1 = b1 , a2 = b2 , . . . , am = bm . Nullpunktiks ehk koordinaatide alguspunktiks ruumis Rm nimetatakse punkti O = (0, 0, . . . , 0). Kaugus ruumis Rm . Olgu ruum...

Matemaatika → Matemaatiline analüüs 2
702 allalaadimist
thumbnail
16
doc

Kordamisküsimused - vastused

MATEMAATILINE ANALÜÜS II Kood YMM0012 3,5 AP KORDAMISKÜSIMUSED 1. Mitme muutujaga funktsiooni mõiste m-muutuja funktsiooniks nimetatakse kujutist, mis seab suuruse P igale väärtusele tema muutumispiirkonnast D vastavusse suuruse z ühe kindla väärtuse Mitmemuutuja funktsioon graafik Funktsiooni z=f(x1,x2,...,xm), määramispiirkonnaga D, graafikuks nimetatakse järgmist ruumi Rm+1 alamhulka ={(x1,x2,...,xm,f(x1,x2,...,xm))||P(x1,x2,...,xm)D} 2. Nivoojooned ja pinnad Kahemuutuja funktsiooni z=f(x,y) nivoojooneks nimetatakse joont, mille moodustavad piirkonna D punktid (x,y) mille korral f(x,y)=C, kus C on etteantud konstant Skalaarvälja f ehk funktsiooni f nivoopinnaks nimetatakse pinda, mis koosneb piirkonna D punktidest (x,y,z) mille korral f(x,y,z)=C, kus C on etteantud konstant. 3. Mitme muutuja funktsiooni piirväärtus ja pidevus Mitmemuutuja funktsiooni piirväärtus m-muutuja funktsioonil f on piirväärtus b punktis A kui suvalises...

Matemaatika → Matemaatiline analüüs 2
511 allalaadimist
thumbnail
3
doc

Mat analüüs 2

4) - . . . . -.: 2, N . 4) . (x,y)S - .1: D . . - Rn . . . - . . . r ×r f(x,y)g(x,y), - . . . . . . . - yR 1)D - N= 1 2 . f ( x, y )dxdy g ( x, y ...

Matemaatika → Matemaatiline analüüs 2
136 allalaadimist
thumbnail
3
pdf

Matemaatiline analüüs II, I teooriakusimused 2013

Matemaatilise analüüsi (II) I osaeksami teooriaküsimused 2013 1. Kahe muutuja funktsiooni väärtuspaaride (x; y) hulka, mille puhul definitsioon. Määramispiirkond. funktsioon z = f (x; y) on määratud, Kahe muutuja funktsiooni nimetatakse selle funktsiooni geomeetriline kujutamine. määramispiirkonnaks. Kui kahe teineteisest sõltumatu muutuva suuruse x ja y igale väärtuspaarile (x; y) mingisugusest nende muutumispiirkonnast D vastab suuruse z väärtus, siis öeldakse, et z on kahe sõltumatu muutuja x ja y funktsioon, mis on määratud piirkonnas D. Argumentide x ja y 2. Kahe muutuja funktsiooni , saame z uue muudu z, mida osamuudu ja täismuudu mõisted nimetatakse funktsiooni z (kujutada ka joonisel). täismuuduks ja mis on määratud Et y väärtus sellel tasa...

Matemaatika → Matemaatiline analüüs 2
310 allalaadimist
thumbnail
9
docx

Matemaatiline analüüs II KT teooria

1. Kahekordne integraal: põhjalik selgitus (vastava piirkonna jaotus, integraalsumma definitsioon jne). Vaatleme xy-tasandil joonega L piiratud kinnist piirkonda D. Olgu antud pidev funktsioon z=f(x,y). Jaotame piirkonna D mingite joontega n osaks: s1, s2, s3,..., sn, mida nim. osapiirkondadeks. Uute sümbolite kasutuselevõtmise vältimiseks mõistame s1,... ,sn all mitte ainult vastavaid osapiirkondi, vaid ka nende pindasid. Võtame igas osapiirkonnas s1 (selle sees või rajajoonel) mingi punkti P1, saades nii n punkti: P1, P2, P3,..., Pn. Tähistame antud funktsiooni z=f(x,y) väärtusi valitud punktides sümbolitega f(P 1),...,f(Pn) ja moodustame korrutiste summa, mille liikmeteks on f(P1)s1: Summat nim. funktsiooni z=f(x,y) integraalsummaks üle piirkonna D. Kui piirkonna D igas punktis...

Matemaatika → Matemaatiline analüüs 2
211 allalaadimist
thumbnail
0
rar

Analüüs II lahendatud ülesanded

docstxt/1290956308116935.txt

Matemaatika → Matemaatiline analüüs 2
765 allalaadimist
thumbnail
3
docx

Matemaatiline analüüs 2

Hulkade H1,....,Hn, otsekorrutiseks e Cartesiuse korrutiseks H1x...xHn nim kõigi järjendite (h1...hn), kus hkHk (k=1,...,n), hulka. Järjendit nim ka korteeziks. Kui Hk=H (k=1,...,n), siis n teguri, millest igaüks on H, otsekorrutise H x...x H jaoks kasutatakse ka tähistust Hn Aritmeetiliseks punktruumiks Rn nimetatakse otsekorrutist Rn, kus R tähistab reaalarvude hulka. Aritmeetiliseks vektorruumiks Rn nimetatakse hulka Rn, mille elementidel on defineeritud liitmine ja arvuga korrutamine järgmiselt: (x1,...,xn)+(y1,...,yn)=(def) (x1+y1,...,xn+yn), (x1,...,xn)=(def) (x1,...,xn), kus (x1,...,xn), y1,...,yn) Rn ja R Ruumi Rn punktide p(x1,...,xn) ja Q(y1,...,yn) vaheliseks kauguseks nim arvu d(P,Q)= ( x1 - y1) 2 + ... + ( xn - yn) 2 . Vektorruumi Rn vektorite x=(x1,...,xn) ja y=(y1,..,yn) skalaarkorrutiseks nim arvu x*y=x1y1+...+xnyn Vektorruumi Rn nullvektorist erinevate vektorite x=(x1,...,xn) ja y=(y1,...,yn) vahelise nurga koosinuse...

Matemaatika → Matemaatiline analüüs 2
166 allalaadimist
thumbnail
8
doc

Matemaatiline analüüs 2, kollokvium 3

Contents 1.Kordse integraali mõiste. Kahekordne intgeraal. Kahekordse integraali omadused...............1 2.Regulaarsed ja normaalsed piirkonnad. Kaksikintegraal. Kahekordse integraali arvutamine kaksikintegraali abi..................................................................................................................... 1 3.Muutujavahetus kordses integraalis. Jakobiaan. Polaarkoordinaadid.....................................2 4.Kolmekordne integraal ja selle arvutamine rist-, silinder- ja sfäärkoordinaatides..................3 5.Teist liiki joonintegraal ja Greeni valem.................................................................................4 6.Diferentsiaalvõrrandi mõiste...................................................................................................5 7.Cauchy ülesanne ehk algväärtusülesanne................................................................................ 5 8.Eksaktne diferentsiaal...

Matemaatika → Matemaatiline analüüs 2
536 allalaadimist
thumbnail
0
rar

Matanalüüs esimene KT lahendatud

docstxt/130632723481019.txt

Matemaatika → Matemaatiline analüüs 2
296 allalaadimist
thumbnail
0
rar

Matemaatiline analüüs II kodune kontrolltöö 1 variant 6

docstxt/13173375139102.txt

Matemaatika → Matemaatiline analüüs 2
339 allalaadimist
thumbnail
5
doc

Matemaatilise analüüsi 2.kollokviumi

Mitmemuutuja funktsiooni mõiste. Mitmemuutuja funktsiooni piirväärtuse definitsioon. Pideva mitmemuutuja Kui funktsiooni z=f(x,y) on diferentseeruv kohal (x,y), siis funktsioon f on pidev sellel kohal. funktsiooni definitsioon. Kahemuutuja funktsiooni pidevuse geomeetriline sisu. Funktsioon z=f(x,y) on diferentseeruv kohal (x,y) siis, kui funktsioonil z=f(x,y) on pidevad osatuletised fx ja fy kohal (x,y). Kui hulga Rn igale punktile P(x1, . . . , xn) on vastavusse seatud muutuja u R kindel väärtus, siis öeldakse, et hulgal on Kui funktsiooni f(x,y) osatuletised fx(x,y) ja fy(x,y) on diferentseeruvad kohal (x,y), siis fxy = fyx kohal (x,y). defineeritud n-muutuja (skalaarväärtusega) funktsioon. Suurust df:=fx(x,y)dx + fy(x,y)dy, kus dx:= x...

Matemaatika → Matemaatiline analüüs 2
37 allalaadimist
thumbnail
0
rar

Matemaatiline analüüs II teooriatöö nr 2 konspekt

docstxt/135680323154.txt

Matemaatika → Matemaatiline analüüs 2
133 allalaadimist
thumbnail
16
doc

Matemaatiline analüüs 2 kollokvium 2

Contents Contents.................................................................................................................................. 1 1. Arvrea mõiste. Arvrea osasumma ja koonduvus. Näiteid koonduvate ja hajuvate arvridade kohta. Geomeetrilise rea osasumma ja summa valemite tuletamine....................................... 2 2. Integraaltunnus. Näidata, mis tingimustel rida ja vastav päratu ingegraal koonduvad samaaegselt. Muutujavahetus päratus integraalis ()............................................................... 3 3. Positiivsete arvridade võrdlustunnused. Üks tunnustest tuletada........................................ 3 4. D'Alemberti ja Cauchy tunnused. Üks neist tuletada........................................................... 4 6. Vahelduvate märkidega read. Leibnizi tunnus..................................................................... 5 5. Arvridade absoluutne ja tingimisi koonduvus. Absoluutselt k...

Matemaatika → Matemaatiline analüüs 2
219 allalaadimist
thumbnail
204
pdf

Topoloogilised ruumid

¨ TALLINNA TEHNIKAULIKOOL MATEMAATIKAINSTITUUT Peeter Puusemp TOPOLOOGILISED RUUMID Loengukonspekt Tallinn 2003 SISUKORD Eess˜ona . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1 TOPOLOOGILINE RUUM . . . . . . . . . . . . . . . . . . . . . . . 6 1.1 Topoloogilise ruumi definitsioon . . . . . . . . . . . . . . . . . . . 6 1.2 Topoloogilise ruumi baas . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3 Kinnised hulgad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 ¨ 1.4 Ulesandeid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 ¨ 2 UMBRUSED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1 Punkti u ¨mbruste s¨ usteem . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Topoloogia m¨a¨a...

Matemaatika → Matemaatiline analüüs 2
11 allalaadimist
thumbnail
8
pdf

Matemaatiline analüüs II 2. kollokviumi spikker

1. Mitmemuutuja funktsiooni lokaalsete ekstreemumite mõisted. Statsionaarne punkt. Kriitiline punkt. piirkonna D rajajoon. Eeldame, et piirkonnas D on täidetud tingimus f(x,y)>=g(x,y). Kahekordse integraali 𝑥 = 𝜌 𝑐𝑜𝑠𝜑 Mitmemuutuja funktsiooni lokaalse ekstreemumi tarvilik tingimus. Definitsioon 1. Öeldakse, et kahe omaduse tõttu ∬𝐷[𝑓(𝑥, 𝑦) − 𝑔(𝑥, 𝑦)]𝑑𝑥𝑑𝑦 = ∬𝐷 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦 − ∬𝐷 𝑔(𝑥, 𝑦)𝑑𝑥𝑑𝑦. Mõlemad kahekordsed 𝑦 = 𝜌 𝑠𝑖𝑛𝜑 muutuja funktsioonil on punktis P1(x1, y1) lokaalne maksimum, kui sellel punktil leidub niisugune ümbrus teisendus on kujul 𝑧=𝑧 .Tavaliselt € [0, +lõpmatus) φ € [0, 2π). ∭Ω 𝑓(𝑥, ...

Matemaatika → Matemaatiline analüüs 2
68 allalaadimist
thumbnail
4
pdf

Matemaatiline analüüs II 1. kollokviumi spikker

1 1 korral ak≠0(k>n) leidub lõplik või lõpmatu piirväärtus lim 𝑘 , siis selle rea koonduvusraadius avaldub kujul 𝑅 = lim 𝑘 . 14. Fourier’ teisenduse omadusi. Fourier’ teisenduse rakendusi. ...

Matemaatika → Matemaatiline analüüs 2
69 allalaadimist
thumbnail
4
doc

Teist ja esimest liiki joonintegraal

Esimest liiki joonintegraal  1)  AB f ( x; y ) ds   f  (t ), (t )  ( ' (t )) 2  ( ' (t )) 2 dt b 2)  f ( x; y ) ds   f  x ( y ), y  1  ( x ' ( y ))2 dy AB a b 3)  AB f ( x; y )ds   f  x, y ( x )  a 1  ( y ' ( x )) 2 dx Näidis. Leida  x 2 AB ds , kus AB on funktsiooni y=ln x graafiku osa, A(1;0) ja B(e;1). 2...

Matemaatika → Matemaatiline analüüs 2
13 allalaadimist
thumbnail
9
docx

Lineaaralgebra

Kordamisküsimused 1) Kompleksarvu mõiste. Kompleksarvu algebraline kuju ja tehted algebralisel kujul. DEF. k.arvuks nim. Arvufoori (a,b) kus a,bR. esitatakse z=a+bi (a-reaalosa,b-imaginaar osa,i- imaginaar ühik). Põhimõiste olgu z1=a1+b1i,z2=a2+b2i z1=z2 kui a1= a2 ja b1=b2, z=0 kui a=0 ja b=0,k- arvu z1=a1-b1i nim.kaas k-arvuks z1=a1+b1i. Arvutamine z1+z2= (a1+a2)+(b1+b2)i, z1-z2= (a1-a2)+(b1-b2), z1*z2= z 1 ( a1 +b 1 i ) (a 2+b 2 i) (a1+b1i)*(a2+b2), = z 2 ( a2 +b 2 i ) (a 2+b 2 i) 2) Kompleksarvu trigonomeetriline kuju ja tehted trigonomeetrilisel kujul. geomeetriline kujutamine k-arv/reaalarvu paar (a,b).saab k-arvu z=a+bi kujutada xy tasandil kus kordinaadid a-reaal osa, b- imaginaar osa ja vastavalt X-telg k-arvu reaal telg ja Y- telg ­ imaginaar telg.XY tasandi iga punkt M(x,y) ongi z=x+iy ...

Matemaatika → Matemaatiline analüüs 2
32 allalaadimist
thumbnail
20
doc

Teooria kontrolltöö 2 (Variant A)

Vähendatud programm 1. Kahemuutuja funktsiooni integraalsumma ja kahekordse integraali definitsioonid. Kahekordse integraali geomeetriline sisu. 2. Kahekordse integraali omadused (põhjendusi ei küsi). 3. y- ja x-telje suhtes regulaarsed piirkonnad. Kahekordse integraali esitus kaksikintegraalina y- ja x-telje suhtes regulaarsete piirkondade korral. Millal nimetatakse piirkonda regulaarseks? 4. Muutujate vahetus kahekordse integraali all. Kahekordse integraali teisendamine polaarkoordinaatidesse (esitada vastav valem tuletamata). 5. Kolmemuutuja funktsiooni integraalsumma ja kolmekordse integraali definitsioonid. 6. Kolmekordse integraali omadused (põhjendusi ei küsi). 7. Kolmekordse integraali esitamine kolmikintegraalina. 8. Muutujate vahetus kolmekordse integraali all. 9. Silinderkoordinaadid ja nende seosed ristkoordinaatidega. Kolmekordse integraali teisendamine silind...

Matemaatika → Matemaatiline analüüs 2
24 allalaadimist
thumbnail
26
pdf

Matemaatilise analüüsi kollokvium nr.1

1. Arvrea mõiste. Arvrea osasumma ja koonduvus. Näiteid koonduvate ja hajuvate arvridade kohta. Avaldist , kus on reaalarvud, nimetatakse arvreaks. Selle rea esimese liikme summat nimetatakse selle rea -ndaks osasummaks, st. Eeltoodud rida nimetatakse koonduvaks, kui selle rea osasummade jada { } on koonduv, st , kusjuures suurust S nimetatakse selle rea summaks. Kui ei eksisteeri lõplikku piirväärtust siis nimetatakse seda rida hajuvaks. Näide 1. Uurime rea koonduvust. Et siis , seega see rida on hajuv. Näide 2. Uurime rea koonduvust. Tegu on positiivse arvreaga, sest Võrdleme seda rida geomeetrilise reaga , see geomeetriline rida on koonduv, sest ...

Matemaatika → Matemaatiline analüüs 2
114 allalaadimist
thumbnail
20
pdf

Matemaatilise analüüsi kollokvium nr.3

1.Kordse integraali mõiste. Kahemuutuja funktsiooni integraalsumma ja kahekordse integraali definitsioonid. Kahekordse integraali geomeetriline sisu. Kahekordse integraali omadused. Kui eksisteerib , mis ei sõltu osapiirkondadeks Dj jaotamise viisist ega punktide Pj ϵ Dj valikust, siis seda piirväärtust nimetatakse funktsiooni f(x,y) kahekordseks integraaliks üle piirkonna D ja tähistatakse Olgu D kinnine tõkestatud piirkond ruumis R2. Olgu z = ƒ (x,y) piirkonnas D määratud pidev funktsioon. Jaotame piirkonna D n tükiks ∆S1,∆S2,…,∆Sn.Tähistagu ∆Si samaaegselt nii i- ndat tükki kui ka i-nda tüki pindala.Valime igalt tükilt ühe punkti P ja moodustame järgmise summa: Vn= ƒ (P1) ∆S1 + ƒ (P2) ∆S2+…+ ƒ (Pn) ∆Sn Seda summat Vn nim funktsiooni ƒ integraalsummaks piirkonnas D Kahekordse integraali geomeetriline sisu :  Olgu ƒ(x,y)≥0. Vaatleme keha Q, mis on ülalt piiratud pinnaga z = (x,y) alt ...

Matemaatika → Matemaatiline analüüs 2
98 allalaadimist
thumbnail
32
pdf

Matemaatilise analüüsi kollokvium nr.2

1. Näidata, et xϵRn korral rahuldab normi aksioome 2. puudu  || x ||1:  k | xk | 3. Näidata, et xϵRn korral rahuldab normi aksioome Normiks vektorruumis V nimetatakse reeglit, mis igale vektorile seab vastavusse skalaari , kusjuures on täidetud järgnevad tingimused: 1). 2). 3). 4. Tõestada üks segatuletiste võrdsuse piisav tingimus. 5. Näidata, et diferentseeruv kahe-või mitmemuutuja funktsioon on pidev. 6. Näidata, et kahe-või mitmemuutuja funktsioon on diferentseeruv, kui tema osatuletised on pidevad. 7.Liitfunktsiooni tuletise ja osatuletise valemid. Üks neist tuletada. Kui funktsioonid xi = xi (t) (i = 1; … ; n) on diferentseeruvad punktis t ja funktsioon u = f (x) on diferentseeruv punktis P(x1(t);…..; xn(t)), siis liitfunktsiooni f (x1(t); … ; xn(t)) = f (x(t)) = u(t) tuletis punktis t avaldub kujul Kui funktsioonid x = x(u; v) ja y = y(u; v) on diferentseeruvad punktis P(u; v) ning funktsioon ...

Matemaatika → Matemaatiline analüüs 2
78 allalaadimist
thumbnail
15
docx

Matemaatika analüüsi II Kontrolltöö

Matemaatilise analüüsi II Kontrolltöö 1. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? (tõestada!). Loetleda diferentsiaali omadused. a. Teades, et ­argumendi muut kohal a -funktsiooni muut kohal a a.i. Nii me näitasime, et a.ii. Tähistades ja vahe järgmiselt a.iii. Kehtib võrratus: a.iv. Et avaldada väärtust kaudu peame kõigepealt avaldama suhte: a.v. Korrutades saadud avaldist saame: kus a.vi. Nüüd näemegi, et koosneb kahest liidetavast, esimeseks dy= ja teine on , mis kahanevad piirprotsessis a.vii. Võrdleme neid suuruseid suhtes: a.viii. Lisaks kehtib veel: a.ix. Nüüd teame,et diferentsiaal dy on sama järku kahanev suur...

Matemaatika → Matemaatiline analüüs 2
99 allalaadimist
thumbnail
14
doc

Matemaatiline analüüs II Teooria

1) Mitmemõõtmelise ruumi ja selle punkti mõisted. Kaugus mitmemõõtmelises ruumis. Kauguse omadused. Parameetrilised jooned. · Mitmemõõteliseks ruumiks nimetakse hulka , mille elementideks on kõik reaalarvust koosnevad järjestatud süsteemid ( a1, a2, ..., an). · Mitmemõõtmelise ruumi punktiks nim mitmemõõtmelise ruumi ( a1, a2, ..., an) süsteemi A=( a1, a2, ..., an). · Kaugus mitmemõõelises ruumis. Kui A=( a1, a2, ..., an) ja B=( b1, b2, ..., bn) siis |AB|= (a1-b1)+ (a2-b2)+ ...+ (an-bn) · Kauguste omadused: A=B siis ja ainult siis, kui |AB|=0 |AB|=|BA| |AB| |AC|+|CB| · Parameetrilised jooned ruumis Rm. Olgu lõigul [T1, T2] antud m funktsiooni x1 = 1(t), x2 = 2(t), . . . , xm = m(t). Vaatleme nende funktsioonidevõrranditest moodustatud süsteemi ...

Matemaatika → Matemaatiline analüüs 2
184 allalaadimist
thumbnail
8
docx

Matemaatiline analüüs II teooria töö

1. · Arvtelje mõiste ­ Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Võib väita, et igale arvtelje punktile vastab üks ja ainult üks reaalarv ja vastupidi: igale reaalarvule vastab üks ja ainult üks arvtelje punkt. · Absoluutväärtuse mõiste. Reaalarvu a absoluutväärtuseks nimetatakse järgmist mittenegatiivset reaalarvu: |a| = a kui a 0 -a kui a < 0 . Reaalarvu a absoluutväärtus |a| on punkti a ja nullpunkti vaheline kaugus arvteljel. · Absoluutväärtuse omadused: 1. | - a| = |a| 2. |ab| = |a| |b| 3. |a + b| |a| + |b| 4. |a - b| | |a| - |b| | · Reaalarvude ja lõpmatuste ümbrused. Reaalarvu a ümbruseks nimetatakse suvalist vahemikku (a - , a + ), kus > 0 on ümbruse raadius. o Reaalarvu a vasakpoolseks ümbruseks nimetatakse suvalist poollõiku (a - , a], kus > 0. o Reaalarvu a parempoolseks ümbruseks nimetat...

Matemaatika → Matemaatiline analüüs 2
96 allalaadimist
thumbnail
13
doc

Matemaatiline analüüs I 1 kt teooria

Täisprogramm Selle programmi järgi saab ette valmistada teooria kontrolltööde B (so raskemateks) variantideks. Esimese kontrolltöö materjal hõlmab lõike 1 ­ 22 ja teise kontrolltöö materjal hõlmab lõike 23 - 45. Igas kontrolltöös on 5 küsimust. Üks küsimus viiest on valitud jämedas kirjas (bold face) olevate teemade hulgast. Vähemalt kaks küsimust viiest sisaldavad tõestusi, tuletuskäike või põhjendusi. Programm järgib otseselt õppejõu konspekti. Kontrolltöödes ei küsita konspektis esitatud näiteid ja väikeses kirjas olevaid osi. 1. Def. Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Def. Reaalarvu a absoluutväärtuseks nimetatakse järgmist mittenegatiivset reaalarvu: Absoluutväärtuste omadused: · |-a|=|a| · |ab|=|a||b| · |a+b||a|+|b| · |a-b|| |a|-|b| | Reaalarvude ja lõpmatuste ümbrused: Def. Rea...

Matemaatika → Matemaatiline analüüs 2
103 allalaadimist
thumbnail
16
doc

Matemaatiline analüüs 2, kollokvium 2

Contents Contents.................................................................................................................................. 1 1. Arvrea mõiste. Arvrea osasumma ja koonduvus. Näiteid koonduvate ja hajuvate arvridade kohta. Geomeetrilise rea osasumma ja summa valemite tuletamine....................................... 2 2. Integraaltunnus. Näidata, mis tingimustel rida ja vastav päratu ingegraal koonduvad samaaegselt. Muutujavahetus päratus integraalis ()............................................................... 3 3. Positiivsete arvridade võrdlustunnused. Üks tunnustest tuletada........................................ 3 4. D'Alemberti ja Cauchy tunnused. Üks neist tuletada........................................................... 4 6. Vahelduvate märkidega read. Leibnizi tunnus..................................................................... 5 5. Arvridade absoluutne ja tingimisi koonduvus. Absoluutselt k...

Matemaatika → Matemaatiline analüüs 2
693 allalaadimist
thumbnail
16
doc

Matemaatiline analüüs II, 1. kollokvium

Contents Contents...................................................................................................................... 1 4.Mitme muutuja funktsiooni piirväärtus. Pidevus........................................................ 5 7) Liitfunktsiooni tuletise ja osatuletise valemid. Uks neist tuletada.............................. 6 8) Defineerida funktsiooni tuletis etteantud suunas. Tuletada suunatuletise valem funktsiooni osatuletiste kaudu. Gradient. Telgedesuunalised tuletised. Suunatuletise tõlgendus..................................................................................................................... 9 10. Olgu mitmemuutuja funktsioon u = f (x) antud ilmutamata kujul võrrandiga F(x,u)= 0. Tuletada valem funktsiooni f osatuletiste jaoks funktsiooni F osatuletiste kaudu. Valem tuletada kas kahe muutuja juhul (x = (x, y) R2) või üldjuhul (x Rn)...........11 12.Tuletada Taylori valem kahe- või mitmem...

Matemaatika → Matemaatiline analüüs 2
853 allalaadimist
thumbnail
14
doc

Esimese teooriatöö täisprogrami konspekt

Matemaatika → Matemaatiline analüüs 2
370 allalaadimist
thumbnail
13
doc

Teise teooriatöö täisprogrammi konspekt

Matemaatika → Matemaatiline analüüs 2
241 allalaadimist
thumbnail
20
docx

Matemaatiline analüüs II. Eksami kordamisküsimuste vastused

1. Kahje muutuja funktsioonid(definitsioon, määramis- ja muutumispiirkonna definitsioon ja tähistused, näited, esitusviisid, ilmutamata kujul esituse definitsioon, graafik ja graafiku näiteid)  DEF: Kahe muutuja funktsioon f on kujutus, mis seab igale arvupaarile (x,y) ∈ D vastavusse ühe reaalarvu z= f ( x , y )  Nende punktide (x,y) hulka D, mille puhul funktsiooni väärtus on lõplik, nimetatakse selle funktsiooni määramispiirkonnaks.  Funktsiooni väärtuste z hulka Z nimetatakse funktsiooni muutumispiirkonnaks.  Esitusviis : z=f (x , y ) z- sõltuv muutja, (x,y)- sõltumatud muutujad  Näide:  Funktsioon võib olla antud ilmutatud kujul z= f (x1 , x2 , x3 , … x n) (z=x2+y2-5) või ilmutamata kujul F ( x 1 , x 2 , ...

Matemaatika → Matemaatiline analüüs 2
165 allalaadimist
thumbnail
13
pdf

Matemaatiline analüüs 2 Küsimused vastustega

1. Sõnastada m-mõõtmeline ruum. Kaugus m-mõõtmelises ruumis. 2. Defineerida punkti P Rm -¨umbrus, rajapunkt, sisepunkt, hulga raja. 3. Defineerida lahtine/kinnine hulk, lahtine/kinnine kera. 4. Sõnastada m-muutuja funktsioon, m-muutuja funktsiooni määramispiirkond, m-muutuja funktsiooni muutumispiirkond, funktsiooni graafik. +muutumispiirkond +graafik 5. Nivoojooned, nivoopinnad. 6. Sõnastada kuhjumispunkt, m-muutuja funktsiooni piirväärtus, m-muutuja funktsiooni korduvad piirväärtused. 8. m-muutuja funktsiooni pidevus. m-muutuja funktsiooni katkevuspunkt. Pidevuse tarvilik ja piisav tingimus. 9. Sõnastada m-muutuja funktsiooni osatuletis. 10. Kahe muutuja funktsiooni osatuletise geomeetriline tähendus. 11. Pinna puutuja, puutujatasand, normaal. Tuletada puutujatasandi võrrand. +tuletamine 12. Kõrgemat järku osatuletised. Segaosatuletised. 13. Näidata, kui funkts...

Matemaatika → Matemaatiline analüüs 2
22 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun