Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse Registreeri konto

Matemaatika analüüsi II Kontrolltöö (0)

5 VÄGA HEA
Punktid

Esitatud küsimused

  • Kui x läheneb nullile?
Vasakule Paremale
Matemaatika analüüsi II Kontrolltöö #1 Matemaatika analüüsi II Kontrolltöö #2 Matemaatika analüüsi II Kontrolltöö #3 Matemaatika analüüsi II Kontrolltöö #4 Matemaatika analüüsi II Kontrolltöö #5 Matemaatika analüüsi II Kontrolltöö #6 Matemaatika analüüsi II Kontrolltöö #7 Matemaatika analüüsi II Kontrolltöö #8 Matemaatika analüüsi II Kontrolltöö #9 Matemaatika analüüsi II Kontrolltöö #10 Matemaatika analüüsi II Kontrolltöö #11 Matemaatika analüüsi II Kontrolltöö #12 Matemaatika analüüsi II Kontrolltöö #13 Matemaatika analüüsi II Kontrolltöö #14 Matemaatika analüüsi II Kontrolltöö #15
Punktid 5 punkti Autor soovib selle materjali allalaadimise eest saada 5 punkti.
Leheküljed ~ 15 lehte Lehekülgede arv dokumendis
Aeg2014-03-13 Kuupäev, millal dokument üles laeti
Allalaadimisi 99 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor notid Õppematerjali autor

Märksõnad

Sarnased õppematerjalid

thumbnail
20
docx

Matemaatiline analüüs II kontrolltöö

tähega P. Kuna punkti M kaugus sirgest võrdub lõigu MP pikkusega , saame Ühtlasi näeme jooniselt, et , kus on asümptoodi tõusunurk. Kuna jääb muutumatuks protsessis , siis põhjal Edasi paneme tähele et, võrdub funktsioonide ja väärtuste vahega, st Seega Selles avaldises , kui . Seega ehk 33. Algfunktsiooni definitsioon. Sõnastada ja tõestada teoreem algfunktsioonide üldavaldise kohta. Funktsiooni määramata integraal ja selle geomeetriline sisu. a. Algfunktsiooni definitsioon Funktsiooni F nimetatakse funktsiooni f algfunktsiooniks hulgas D, kui iga korral kehtib võrdus . b. Sõnastada ja tõestada teoreem algfunktsioonide üldavaldise kohta Teoreem: Kui F on funktsiooni f algfunktsioon hulgas D, siis kõik funktsiooni f algfunktsioonid hulgas D avalduvad kujul F+C, kus C on suvaline konstant.

Matemaatiline analüüs
thumbnail
18
docx

Matemaatiline analüüs KT2 vastused

23. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? (tõestada!). Loetleda diferentsiaali omadused. Funktsiooni muudu peaosa ja jääkliige. Olgu antud funktsioon, mis on diferentseeruv punktis a. Eeldame, et f(a)0 kasutades mõisteid: x = x - a - argumendi muut kohal a y = f(x) - f(a) - funktsiooni muut kohal a . Näitasime, et Seega kui tähistame ja f'(a) vahe järgmiselt : Kehtib võrdus Püüame avaldada funktsiooni muutu y argumendi muudu x kaudu. Selleks avaldame kõigepealt võrdusest suhte ja korrutame saadud avaldise x-ga. Saame valemi Valemist näeme, et funktsiooni muut y koosneb kahest liidetavast, millest esimene on diferentsiaal dy = f(a)x ja teine on . Mõlemad liidetavad on lõpmatult kahanevad protsessis x 0. Võrdleme neid suurusi x suhtes. Esiteks, eelduse f(a) 0 põhjal saame : Teiseks kehtib valem : Näeme, et esimene liid

Matemaatiline analüüs I
thumbnail
3
docx

Matemaatiline analüüs 1

23Funktsiooni muudu peaosa ja jääkliige. Olgu antud funktsioon, mis on diferentseeruv punktis a. Eeldame, et f(a)0 26l'Hospitali reegli põhjal saab 0/0 tüüpi määramatusega piirväärtuse arvutamisel üle minna piirväärtusele, mille all kasutades mõisteid: esineb esialgse murru lugeja tuletise ja nimetaja tuletise jagatis. x = x - a - argumendi muut kohal a Tuletamine. Arvutame lim(x0)?sinx/x?. Elementaarfunktsioon sinx/x ei ole x = 0 korral määratud (tekib määramatus y = f(x) - f(a) - funktsiooni muut kohal a . 0/0). Piirväärtuse arvutamisel kasutame l'Hospitali reeglit: Näitasime, et

Matemaatiline analüüs 1
thumbnail
37
docx

Matemaatiline analüüs l.

Matematiline analüüs l. Jaan Jaano 1. Arvtelje mõiste. Reaalarvu absoluutväärtus. Loetleda absoluutväärtuse omadused. Reaalarvude ja lõpmatuste ümbrused. Tõkestatud hulga definitsioon. Arvtelje mõiste. Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Võib väita, et igale arvtelje punktile vastab üks ja ainult üks reaalarv ja vastupidi: igale reaalarvule vastab üks ja ainult üks arvtelje punkt. Absoluutväärtuse mõiste. Reaalarvu a absoluutväärtuseks nimetatakse järgmist mittenegatiivset reaalarvu: |a| = a kui a 0 -a kui a < 0 . Reaalarvu a absoluutväärtus |a| on punkti a ja nullpunkti vahelist kaugust arvteljel. Absoluutväärtuse omadused: 1. | - a| = |a| 2. |ab| = |a| |b| 3. |a + b| |a| + |b| 4. |a - b| | |a| - |b| | Reaalarvude ja lõpmatuste ümbrused. Reaalarvu a ümbruseks nimetatakse suvalist vahemikku (a - , a + ), kus > 0 on ümbruse raadius. Reaalarvu a vasakpoolseks ümbruseks nimetatakse suva

Matemaatiline analüüs
thumbnail
23
docx

MATEMAATILINE ANALÜÜS TÖÖ VASTUSED

Algfunktsiooni üldavaldis Kui F on funktsiooni f algfunksioon hulgas D, siis on kõik funktsiooni f algfunktsioonid hulgas D avalduvad kujul F+C, kus Tõestus Kuna iga korral, siis , mis näitab, et suvaline funktsioon on tõesti algfunktsioon hulgas D. Kui f-il leidub algfunktsioon G, mis ei avaldu kujul . Kuna G ja F on ühe ja sama funktsiooni f algfunktsioonid siis saame iga korral. Nulltuletist omab ainult konstantne funktsioon, seega , kus C on konstant. Sealt järeldub Määramata integraal ­ Funktsiooni f algfunktsioonide üldavaldis ja tähistatakse e Määramata integraal ei ole ühene funktsioon tal on lõputult erinevaid väärtusi, mis sõltuvad valitud konstandist C. Teisalt võib tõlgendada integraali, kui üheste funktsioonide parve , kus konstandi C igale väärtusele vastab üks ühene funktsioon, kujutades seda funktsiooni xy-konrdinaadistikus saame joonteparve mille jooned on üksteisest tuletatavad y-telje paralleellükk abil. 34. 1. 2. 3.

Matemaatika analüüs I
thumbnail
36
pdf

Matemaatiline analüüs

Arvutame G ja F vahe tuletise. Kuna G ja F on ühe ja sama funktsiooni f algfunktsioonid hulgas D, siis saame (G(x) − F(x))’ = G’(x) – F’(x) = f(x) − f(x) = 0 iga x ∈ D korral. Nulltuletist omab aga ainult konstantne funktsioon. Seega G − F = C, kus C on mingi konstant. Viimasest võrdusest saame seose G = F +C, mis näitab, et G ikkagi avaldub kujul F + C. Jõudsime vastuolule. Teoreem on tõestatud. Funktsiooni määramata integraal ja selle geomeetriline sisu. Funktsiooni f algfunktsioonide üldavaldist F(x)+C, kus C on konstant, nimetatakse funktsiooni f määramata integraaliks ja tähistatakse ʃf(x)dx. Seega definitsiooni kohaselt ʃ f(x)dx = F(x) + C , C − konstant Algfunktsiooni leidmist nimetatakse integreerimiseks. Kujutades seda funktsioonideparve graafiliselt tasandil xy-koordinaadistikus saame joonteparve, mille jooned on üksteisest tuletatavad y-telje sihilise paralleellükke abil 34. Integraalide tabel. 1

Matemaatiline analüüs 1
thumbnail
142
pdf

Matemaatilise analüüsi konspekt TTÜ's

. . . 88 4.3 Funktsiooni suurima ja v¨ahima v¨a¨artuse leidmine l~oigul. . . . . . 92 4.4 Joone kumerus, n~ogusus ja k¨a¨anupunktid. . . . . . . . . . . . . . 92 4.5 Joone as¨ umptoodid. . . . . . . . . . . . . . . . . . . . . . . . . . 96 5 Integraalid 103 5.1 Algfunktsioon ja m¨a¨aramata integraal. . . . . . . . . . . . . . . . 103 5.2 Integraalide tabel. M¨a¨aramata integraali omadused. . . . . . . . 104 5.3 Asendusv~ote ja ositi integreerimine m¨a¨aramata integraali aval- damisel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5.4 Ratsionaalfunktsioonide integreerimine. Ratsionaalfunktsiooni in- tegraalile taanduvad integraalid. . . . . . . . . . . . . . . . . . . 111 5

Matemaatiline analüüs
thumbnail
142
pdf

Matemaatiline analüüs I

. . . 88 4.3 Funktsiooni suurima ja v¨ahima v¨a¨artuse leidmine l~oigul. . . . . . 92 4.4 Joone kumerus, n~ogusus ja k¨a¨anupunktid. . . . . . . . . . . . . . 92 4.5 Joone as¨ umptoodid. . . . . . . . . . . . . . . . . . . . . . . . . . 96 5 Integraalid 103 5.1 Algfunktsioon ja m¨a¨aramata integraal. . . . . . . . . . . . . . . . 103 5.2 Integraalide tabel. M¨a¨aramata integraali omadused. . . . . . . . 104 5.3 Asendusv~ote ja ositi integreerimine m¨a¨aramata integraali aval- damisel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5.4 Ratsionaalfunktsioonide integreerimine. Ratsionaalfunktsiooni in- tegraalile taanduvad integraalid. . . . . . . . . . . . . . . . . . . 111 5

Matemaatika




Meedia

Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun