Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Matanalüüs II (0)

5 VÄGA HEA
Punktid

Lõik failist

Vasakule Paremale
Matanalüüs II #1 Matanalüüs II #2 Matanalüüs II #3 Matanalüüs II #4 Matanalüüs II #5 Matanalüüs II #6
Punktid 50 punkti Autor soovib selle materjali allalaadimise eest saada 50 punkti.
Leheküljed ~ 6 lehte Lehekülgede arv dokumendis
Aeg2014-11-30 Kuupäev, millal dokument üles laeti
Allalaadimisi 101 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor Flow Õppematerjali autor
1. Kahe muutuja funktsioon ja selle osatuletise rakendused: ekstreemumi leidmine, pinna puutuvtasapind ja normaal
2. Määratud integraal ja selle geomeetrilised rakendused: tasapinnalise kujundi pindala, joone kaare pikkus, pöördpinna ruumala ja pindala
3. Kahekordse integraali definitsioon ja omadused: aditiivsus, lineaarsus, monotoonsus, absoluutne integreeruvus, keskväärtusteoreem
4. Kaksikintegraal, kahekordse integraali arvutamine
5. Kahekordse integraali geomeetrilised rakendused: ruumala, tasapinnalise ja ruumilise kujundi pindala
6. Kahekordse integraali füüsikalised rakendused: aine mass, tasandilise kujundi masskese, tasandilise kujundi inertsmoment
7. Kahekordne integraal polaarkoordinaatides, Poissoni integraal
8. Kolmekordne integraal ja selle arvutamine kolmikintegraali abil
9. Kolmekordse integraali arvutamine silinder- ja sfäärikoordinaatides
10. Kolmekordse integraali rakendused: ruumilise kujundi ruumala, mass, masskese, inertsmomendid
11. I liiki joonintegraal, selle omadused ja arvutamine
12. II liiki joonintegraal, selle omadused ja arvutamine
13. II liiki joonintegraali sõltumatus integreerimisteest
14. I liiki ja II liiki joonintegraali rakendusi: joone pikkus, mass ja masskese, silinderpinna pindala, parameetrilisel kujul antud tasandilise kujundi pindala, muutuva jõu poolt tehtud töö
15. I liiki pindintegraal, selle omadused ja arvutamine
16. I liiki pindintegraali rakendused: ruumilise pinnatüki pindala, mass, masskese ja inertsmomendid
17. II liiki pindintegraal, selle arvutamine ja omadused
18. Greeni, Gauss-Ostrogradski ja Stokesi valemid

Sarnased õppematerjalid

thumbnail
55
pdf

Matemaatiline analüüs II loengukonspekt

MATEMAATLINE ANALÜÜS II 1. KORDSED INTEGRAALID Kordame kõigepealt mõningaid teemasid Matemaatlise analüüsi I osast. 1.1 Kahe muutuja funktsioonid Kui Tasndi R 2 mingi piirkonna D igale punktile x, y D seatakse ühesel viisil vastavusse arv z, siis öeldakse, et piirkonnas D on määratud kahe muutuja funktsioon z f x, y . Piirkoda D nimetataksefunktsiooni f määramispiirkonnaks. See on mingi piirkond xy-tasandil. Näide 1. Poolsfääri z 1 x2 y 2 määramispiirkonnaks on ring x 2 y2 1. Funktsiooni z ln x y määramispiirkonnaks on pooltasand y x (sirgest y x ülespoole jääv tasandi osa: vaata joonist). Kahe muutja funktsioon ise esitab pinda xyz-ruumis (ruumis R 3 ). Näide 2. Funktsiooni z x2 y 2 graafikuks on pöördparaboloid (vaata allpool olevat joonist) Kahe muutuja funktsiooni f nivoojoonteks nimetatakse jooni f x, y c Näide 3. Tüüpiline näide nivoojoo

Matemaatiline analüüs ii
thumbnail
10
doc

Matemaatiline analüüs II

1. Kahemuutuja funktsiooni integraalsumma mõiste ja geomeetriline sisu. · Olgu D kinnine tõkestatud piirkond ruumis R2. Olgu z = (x,y) piirkonnas D määratud pidev funktsioon. Jaotame piirkonna D n tükiks S1,S2,...,Sn.Tähistagu Si samaaegselt nii i-ndat tükki kui ka i-nda tüki pindala.Valime igalt tükilt ühe punkti P ja moodustame järgmise summa: Vn= (P1) S1 + (P2) S2+...+ (Pn) Sn Seda summat Vn nim funktsiooni integraalsummaks piirkonnas D · Olgu (x,y) 0. siis saab integraalsummas olevat korrutist (P i) Si tõlgendada kui silindri ruumala, mille põhi on S i ja kõrgus (Pi) Selline silinder tähistatakse Zi-ga. IntegraalsummaVn on järelikult silindrite ühendi Z=Z1 U Z2 U...U Zn ruumala. Silindrite ühend Z on treppkeha, mille ülemine pind on tükiti tasapinnalineomades hüppeid erinevate kõrgustega naaber silindrite liitekohtades. 2. Kahekordse integraali mõiste j

Matemaatiline analüüs
thumbnail
4
doc

Spikker

f ( P)dS = f ( A) dS 1. Kahemuutuja funktsiooni integraalsumma mõiste ja f * (P)dS = f * (P)dS + f * (P)dS = f (P)dS m d geomeetriline sisu Vn = f ( P)dS = lim Vn = lim f ( pi , y)dy xi + lim = Kahemõõtmelises hulgas DR2 määratud funktsiooni f(x,y) integraalsummaks antud piirkonnas D nimetatakse summat D D 4. Kahekordse integraali arvutamine ristkoordinaatides

Matemaatiline analüüs
thumbnail
16
doc

Kordamisküsimused - vastused

MATEMAATILINE ANALÜÜS II Kood YMM0012 3,5 AP KORDAMISKÜSIMUSED 1. Mitme muutujaga funktsiooni mõiste m-muutuja funktsiooniks nimetatakse kujutist, mis seab suuruse P igale väärtusele tema muutumispiirkonnast D vastavusse suuruse z ühe kindla väärtuse Mitmemuutuja funktsioon graafik Funktsiooni z=f(x1,x2,...,xm), määramispiirkonnaga D, graafikuks nimetatakse järgmist ruumi Rm+1 alamhulka ={(x1,x2,...,xm,f(x1,x2,...,xm))||P(x1,x2,...,xm)D} 2. Nivoojooned ja pinnad Kahemuutuja funktsiooni z=f(x,y) nivoojooneks nimetatakse joont, mille moodustavad piirkonna D punktid (x,y) mille korral f(x,y)=C, kus C on etteantud konstant Skalaarvälja f ehk funktsiooni f nivoopinnaks nimetatakse pinda, mis koosneb piirkonna D punktidest (x,y,z) mille korral f(x,y,z)=C, kus C on etteantud konstant. 3. Mitme muutuja funktsiooni piirväärtus ja pidevus Mitmemuutuja funktsiooni piirväärtus m-muutuja funktsioonil f on piirväärtus b punktis A kui suvalises piirprotsessis PA, mis rahulda

Matemaatiline analüüs 2
thumbnail
32
pdf

Matemaatiline analüüs II konspekt - MITME MUUTUJA FUNKTSIOONID

Kordamine eksamiks aines matemaatiline analüüs II (2004/2005 õa kevad) §1. MITME MUUTUJA FUNKTSIOONID 1. Ruum R m , hulgad selles ruumis Def. Kõigi m reaalarvust koosnevate järjestatud süsteemide P = ( x1 ,..., x m ) hulka nimetatakse m-mõõtmeliseks ruumiks. Def. Kui m-mõõtmelises ruumis defineeritakse süsteemide P = ( x1 ,..., x m ) ja Q = ( y1 ,..., y m ) m vaheline kaugus d (P, Q ) valemiga d (P, Q ) = (x - y i ) , siis nimetatakse seda ruumi 2 i i =1 m-mõõtmeliseks eukleidiliseks ruumiks ja tähistatakse R m . Süsteemi P = ( x1 ,..., x m ) nimetatakse ruumi R m punktiks ning reaalarve xi (1 i m ) punkti P koordinaatideks.

Matemaatiline analüüs ii
thumbnail
20
docx

Matemaatiline analüüs II. Eksami kordamisküsimuste vastused

1. Kahje muutuja funktsioonid(definitsioon, määramis- ja muutumispiirkonna definitsioon ja tähistused, näited, esitusviisid, ilmutamata kujul esituse definitsioon, graafik ja graafiku näiteid)  DEF: Kahe muutuja funktsioon f on kujutus, mis seab igale arvupaarile (x,y) ∈ D vastavusse ühe reaalarvu z= f ( x , y )  Nende punktide (x,y) hulka D, mille puhul funktsiooni väärtus on lõplik, nimetatakse selle funktsiooni määramispiirkonnaks.  Funktsiooni väärtuste z hulka Z nimetatakse funktsiooni muutumispiirkonnaks.  Esitusviis : z=f (x , y ) z- sõltuv muutja, (x,y)- sõltumatud muutujad  Näide:  Funktsioon võib olla antud ilmutatud kujul z= f (x1 , x2 , x3 , … x n) (z=x2+y2-5) või ilmutamata kujul F ( x 1 , x 2 , x 3 , … x n ;

Matemaatiline analüüs 2
thumbnail
14
pdf

Matemaatiline analüüs II

Mitmemõõtmelise ruumi mõiste Def: On antud n reaalarvu x1...xn ja nende järjestatud jada (x1...xn)(-punkt) ­ seda nim n- mõõtmelise ruumi punktiks. Rn={(x1,...,xn) | xi R, i=1,...,n}, P(x1,...,xn) ­ punkt koordinaatidega xi n=1: R1={P(x1) | x1 R} geom. sirge n=2: R2={P(x1,x2) | x1,x2 R} geom. tasand n=3: R3={P(x1,x2,x3) | x1,x2,x3 R} geom. ruum Punkt A on piirkonna D sisepunkt, sel korral kui tal leidub ümbrus, mis sisaldub piirkonnas D. Punkt A on piirkonna D rajapunkt sel korral kui iga tema ümbrus sisaldab nii piirkonna D kui ka piirkonda mittekuuluvaid punkte. Piirkond D on lahtine, kui ta koosneb sisepunktidest. Piirkond D on kinnine, kui ta koosneb nii sise- kui ka rajapunktidest. Mitme muutuja funktsiooni mõiste Def: nMF f:RnR:P(x1,...,xn) Rn a w=f(P) f(x1,...,xn) R Kujutlus, mis seab n-mõõtmelise ruumi punktidele P vastavusse lõpliku reaalarvu w=f(P), nim n- muutuja funktsiooniks. Geom ­ hüperpind n+1-mõõtmelises ruumis. Füüsikaliselt on nMF skalaarv�

Matemaatiline analüüs 2
thumbnail
20
pdf

Matemaatilise analüüsi kollokvium nr.3

1.Kordse integraali mõiste. Kahemuutuja funktsiooni integraalsumma ja kahekordse integraali definitsioonid. Kahekordse integraali geomeetriline sisu. Kahekordse integraali omadused. Kui eksisteerib , mis ei sõltu osapiirkondadeks Dj jaotamise viisist ega punktide Pj ϵ Dj valikust, siis seda piirväärtust nimetatakse funktsiooni f(x,y) kahekordseks integraaliks üle piirkonna D ja tähistatakse Olgu D kinnine tõkestatud piirkond ruumis R2. Olgu z = ƒ (x,y) piirkonnas D määratud pidev funktsioon. Jaotame piirkonna D n tükiks ∆S1,∆S2,…,∆Sn.Tähistagu ∆Si samaaegselt nii i- ndat tükki kui ka i-nda tüki pindala.Valime igalt tükilt ühe punkti P ja moodustame järgmise summa: Vn= ƒ (P1) ∆S1 + ƒ (P2) ∆S2+…+ ƒ (Pn) ∆Sn Seda summat Vn nim funktsiooni ƒ integraalsummaks piirkonnas D Kahekordse integraali geomeetriline sisu :  Olgu ƒ(x,y)≥0. Vaatleme keha Q, mis on ülalt piiratud pinnaga z = (x,y) alt

Matemaatiline analüüs 2




Meedia

Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun