Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Mat analüüs 1 (2)

3 HALB
Punktid
Mat analüüs 1 #1 Mat analüüs 1 #2
Punktid 10 punkti Autor soovib selle materjali allalaadimise eest saada 10 punkti.
Leheküljed ~ 2 lehte Lehekülgede arv dokumendis
Aeg2008-11-17 Kuupäev, millal dokument üles laeti
Allalaadimisi 318 laadimist Kokku alla laetud
Kommentaarid 2 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor marekag Õppematerjali autor
Määratud integraali mõiste.
Määratud integraali põhiomadused.
Määratud integraali arvutamine.
Newton-Leibnizi valem.
Muutuja vahetus määratud integraalis.
Ositi integreerimine.
Lõpmatute rajadega päratud integraalid.
Päratud integralid tõkestamata funktsioonidest

Sarnased õppematerjalid

thumbnail
11
pdf

Määratud integraal

MÄÄRATUD INTEGRAAL Pindfunktsioon ja tema tuletis Kõverjooneliseks trapetsiks nimetatakse kujundit, mille kaks külge on teineteisega paralleelsed sirged (paralleelsed näiteks y teljega). Vaatame siin esialgu veel lihtsustust, kus ka kolmas külg on sirge (x telg või täpsemalt x telje lõik [a,b]), neljas külg funktsiooni y = f ( x ) graafik. Trapetsiga on sarnasus: kahe vastaskülje paralleelsus. y M A X B y = f(x) m P P 0 a x x+x b x Märgime x teljel punkti x ja vaatleme kõverjoonelist trapetsit axXA. Tähistame trapetsi pindala tähega S. Pindala S sõltub x-st, igale kindlale x väärtusele vastab pindala S kindel väärtus, seega pindala

Matemaatika
thumbnail
11
doc

Määratud integraal

MÄÄRATUD INTEGRAAL Pindfunktsioon ja tema tuletis Kõverjooneliseks trapetsiks nimetatakse kujundit, mille kaks külge on teineteisega paralleelsed sirged (paralleelsed näiteks y teljega). Vaatame siin esialgu veel lihtsustust, kus ka kolmas külg on sirge (x telg täpsemalt x telje lõik [a,b], neljas külg funktsiooni y = f ( x ) graafik. Trapetsiga on sarnasus: kahe vastaskülje paralleelsus. y M A X B y = f(x) m P P 0 a x x+x b x Märgime x teljel punkti x ja vaatleme kõverjoonelist trapetsit axXA. Tähistame trapetsi pindala tähega S. Pindala S sõltub x-st, igale kindlale x väärtusele vastab pindala P kindel väärtus, seega pindala S on x fu

Kõrgem matemaatika
thumbnail
7
pdf

Määramata integraalid

KÕRGEM MATEMAATIKA III Matemaatilise analüüsi elemendid 3. Määramata integraalid Õppekirjandus: [1] Abel, E., Kokk, K. Kõrgem matemaatika (Harjutusülesanded). EMS, Tartu, 2003. [2] Lõhmus, A., Petersen, I., Roos, H. Kõrgema matemaatika ülesannete kogu. "Valgus", Tallinn, 1982. [3] Loone, L., Soomer, V. Matemaatilise analüüsi algkursus. "TÜ Kirjastus", Tartu, 2006. [4] Tõnso, T., Veelmaa, A. Matemaatika XII klassile. "Mathema", Tallinn, 1995. [5] Piskunov, N. Diferentsiaal- ja integraalarvutus. "Valgus", Tallinn, 1981. 3.1 Algfunktsioon ja määramata integraal Kursuse eelnevas osas käsitlesime ühe muutuja funktsiooni y = f (x) tuletise y = f (x) leid- misega seotud küsimusi. Teame, et funktsiooni f (x) = 2x tuletis on f (x) = 2 ja funktsiooni f (x) = sin x tuletis on f (x) = cos x. Vaatleme nüüd vastupidist ülesannet. Olgu antud funktsioon y =

Kõrgem matemaatika
thumbnail
25
doc

Määratud integraal ja selle rakendused

MÄÄRATUD INTEGRAAL, SELLE RAKENDUSED 1.1 Määratud integraali rakendused 1.2 SISSEJUHATUS MÄÄRATUD INTEGRAALI a) Integraalne alam ­ja ülemsumma · On antud funktsioon y= f(x), mis on PIDEV lõigul [a;b] (argumendi väärtused) · Sellel lõigul eksisteerib kaks olulist väärtust: funktsiooni suurim väärtus ja funktsiooni vähim väärtus. · Tähistame funktsiooni f(x) suurima väärtuse tähega M ja väikseima väärtuse tähega m · Funktsiooni väärtusi näitab graafiliselt y-telg (alati!) N2 B A xn=b · Nüüd jaotame selle lõigu [a, b] mitmeteks osadeks, alamlõikudeks... kuna pole lõplik otsus, mitmeks, siis ütleme, et jaotame selle lõigu n osaks. ·

Matemaatiline analüüs
thumbnail
14
pdf

Matemaatiline analüüs II

Mitmemõõtmelise ruumi mõiste Def: On antud n reaalarvu x1...xn ja nende järjestatud jada (x1...xn)(-punkt) ­ seda nim n- mõõtmelise ruumi punktiks. Rn={(x1,...,xn) | xi R, i=1,...,n}, P(x1,...,xn) ­ punkt koordinaatidega xi n=1: R1={P(x1) | x1 R} geom. sirge n=2: R2={P(x1,x2) | x1,x2 R} geom. tasand n=3: R3={P(x1,x2,x3) | x1,x2,x3 R} geom. ruum Punkt A on piirkonna D sisepunkt, sel korral kui tal leidub ümbrus, mis sisaldub piirkonnas D. Punkt A on piirkonna D rajapunkt sel korral kui iga tema ümbrus sisaldab nii piirkonna D kui ka piirkonda mittekuuluvaid punkte. Piirkond D on lahtine, kui ta koosneb sisepunktidest. Piirkond D on kinnine, kui ta koosneb nii sise- kui ka rajapunktidest. Mitme muutuja funktsiooni mõiste Def: nMF f:RnR:P(x1,...,xn) Rn a w=f(P) f(x1,...,xn) R Kujutlus, mis seab n-mõõtmelise ruumi punktidele P vastavusse lõpliku reaalarvu w=f(P), nim n- muutuja funktsiooniks. Geom ­ hüperpind n+1-mõõtmelises ruumis. Füüsikaliselt on nMF skalaarv�

Matemaatiline analüüs 2
thumbnail
11
doc

Matemaatiline analüüs - konspekt II

32. Lokaalse ekstreemumi piisavad tingimused: tingimus I. Olgu x1 funktsiooni f kriitiline punkt. Kui läbides punkti x1 vasakult paremale funktsiooni tuletise märk muutub plussist miinuseks siis on funktsioonil selles punktis lokaalne maksimum. Kui aga läbides punkti x1 vasakult paremale funktsiooni tuletise märk muutub miinusest plussiks siis on funktsioonil selles punktis lokaalne miinimum. Kui funktsioonil eksisteerib teist järku tuletis siis saab lokaalsete ekstreemumite olemasolu kontrollida ka selle abil. Nimelt maksimumpunkti läbides vasakult paremale funktsiooni graafiku puutuja tõus väheneb. See tähendab et funktsiooni tuletis kahaneb. Funktsiooni tuletis kahaneb aga juhul kui teine tuletis on negatiivne. Seevastu miinimupunkti läbides puutuja tõus suureneb, seega tuletis kasvab. Tuletis kasvab aga juhul kui teine tuletis on positiivne. Järelikult kehtib järgmine väide: Lokaalse ekstreemumi piisav tingimus II. Olgu f ` (x1) = 0. Kui f ` '(x1) < 0 siis on funktsio

Matemaatiline analüüs
thumbnail
20
docx

MATEMAATILINE ANALÜÜS I

MATEMAATIKA EKSAM. 1. Muutuvad suurused (üldiselt). 1)konstantsed suurused 2)muutuvad suurused NT: ühtlase liikumise korral on kiirus konstante suurus, teepikkus aga muutuv suurus. Funktsiooni mõiste (definitsioon, tähistused, näited). Funktsiooni esitusviise (piltlik, valemiga, tabelina, nooldiagrammina, sõnadega jne). Ühesed, paaris- ja paaritud, perioodilised, kasvavad ja kahanevad funktsioonid (definitsioonidega). Definitsioon: muutuvat suurust y nimetatakse muutuva suuruse x funktsiooniks, kui suuruse x igale väärtusele on vastav y üks väärtus Tähistused: argument(muutuja) x; argument(muutuja) y; määramispiirkond X; muutumispiirkond Y Näited: 2. Funktsiooni graafik (definitsioon, piltlik esitus). Definitsioon: funktsiooni graafik= {(x,f(x)): x∈X} Piltlikult: 3. Pöördfunktsioon (definitsioon). Näiteid. Kuidas leida pöördfunktsioone? Definitsioon: funktsiooni kujul

Matemaatiline analüüs 1
thumbnail
1
doc

Matemaatiline analüüs 1 (2 teooria töö)

KT2 Pöördfunktsiooni tuletis on antud funktiooni tuletise pöördväärtus. Kui l~oigul [a; b] pideval ja rangelt monotoonsel funktsioonil y =f(x) leidub kohal a nullist erinev tuletis, siis pöördfunktsioonil x = g(y) leidub tuletis kohal b = f(a), kusjuures g '(b)=1/f ' (a) Param kujul f tuletis: kui f y=f(x) on antud parameetrilisel kujul x(t)=(t); y(t)=(t) , t=[a,b], kusjuures f-id (t) ja (t) on diferentseeruvad vahemikus (a,b) ja (t) on rangelt monotoonne lõigul[a,b] ning (t)0 (t=(a,b), siis y '=(t)/(t) F f(x) n-järku tuletiseks nim f-i f(x) (n-1)-järku tuletise tuletits, st fn(x)=(fn-1(x)) ' F-i y=f(x) n-järku diferentsiaaliks nim diferentsiaali selle f-i n-1 järku diferentsiaalist dny=d(dn-1y) Funktsiooni y = f(x) nimetatakse rangelt kasvavaks punktis x, kui leidub selline positiivne arv , et suvaliste x1 (x-,x) ja x2 (x; x + ) korral f(x1) < f(x) < f(x2). Kui funktsioon on rangelt kasvav punktis x, siis leidub selline 0, et 0|x| --y/x0 Funktsiooni y = f(x) nimetatakse

Matemaatiline analüüs




Kommentaarid (2)

R1im profiilipilt
Rain Ungert: mõneti abiks
13:59 12-12-2008
tiitsokk profiilipilt
tiitsokk: hea abi
21:10 15-01-2010



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun