Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Logaritmvõrratused (2)

5 VÄGA HEA
Punktid

Lõik failist

Vasakule Paremale
Logaritmvõrratused #1 Logaritmvõrratused #2 Logaritmvõrratused #3 Logaritmvõrratused #4 Logaritmvõrratused #5 Logaritmvõrratused #6 Logaritmvõrratused #7 Logaritmvõrratused #8 Logaritmvõrratused #9 Logaritmvõrratused #10
Punktid 10 punkti Autor soovib selle materjali allalaadimise eest saada 10 punkti.
Leheküljed ~ 10 lehte Lehekülgede arv dokumendis
Aeg2012-10-30 Kuupäev, millal dokument üles laeti
Allalaadimisi 54 laadimist Kokku alla laetud
Kommentaarid 2 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor T . Õppematerjali autor

Sarnased õppematerjalid

thumbnail
13
ppt

Eksponentvõrratused

ühest suurema aluse 5 korral on eksponentfunktsioon kasvav ja ühest 2 väiksema aluse korral 1 kahanev. -3 -2 -1 0 1 2 3 x Lihtsaimad eksponentvõrratused Lihtsaimad eksponentvõrratused on ax > b (1) ja ax < b. (2) Juhul kui b 0, siis on võrratus (1) täidetud iga x R korral, võrratusel (2) aga lahendid puuduvad. Lihtsaimate eksponentvõrratuste lahendamine Kui b > 0, siis sõltub lahendihulk sellest, kas alus a on ühest suurem või väiksem: y = ax , y a) juhul kui b a> a > 1, 1

Matemaatika
thumbnail
100
pdf

MATEMAATIKA TÄIENDUSÕPE

. 23 3.10 Näiteid lineaarvõrrandite ja ruutvõrrandite lahendamisest ning ruutkolmliikmete teguriteks lahutamisest ……………………..….… 24 3.11 Determinandid …………………………………………………..….. 27 3.12 Lineaarvõrrandisüsteem ……………………………………….….… 27 3.13 Näited lineaarvõrrandisüsteemide lahendamisest ……………..……. 28 3.14 Võrratus ………………………………………………………...…… 31 3.15 Lineaarvõrratus ………………………………………………..…… 31 3.16 Lineaarne võrratussüsteem ……………………………………...….. 32 3.17 Ruutvõrratus …………………………………………………….….. 33 3.18 Kõrgema astme võrratus ……………………………………………. 34 3

Matemaatika
thumbnail
14
pdf

Võrratused

Jüri Afanasjev Tartu 2003 Juhendmaterjal on jätkuks TÜ Teaduskooli I kursusel läbitöötatud brosüürile E. Tamme "Algebraliste võrrandite lahendamisest". Vaadeldakse kõrgema astme võrratuste lahendamist intervallmeetodiga, absoluutväärtusi sisaldavaid võrratusi ja juurvõrratusi. Õppematerjali koostamisel kasutatud kirjandus: Abel, E. jt Aritmeetika ja algebra. Tartu, 1984 Gabovits, J. Võrratused. Tartu, 1970 Jürimäe, E., Velsker, K. Matemaatika käsiraamat IX - XI klassile. 2. tr. Tallinn, 1984 Litvinenko, V. N. jt Praktikum po reseniju matematitseskih zadats. Moskva, 1984 (vene keeles). 2 VÕRRATUSED Kaks algebralist avaldist, mis on omavahel seotud märkidega >, või < , moodustavad võrratuse.

Matemaatika
thumbnail
11
ppt

Logaritmid

Logaritmid järgmine slaid esitluse lõpp Logaritmi definitsioon Definitsioon Arvu x logaritmiks alusel a ( a > 0, a 1 ) nimetatakse arvu c, mille korral ac = x. Näited Arvu 25 logaritm alusel 5 on 2, kuna 52 = 25 Arvu 0,125 logaritm alusel 2 on -3, kuna 2-3 = 1/8 = 0,125 Logaritmi leidmist nimetatakse logaritmimiseks. Arvu x (logaritmitava) logaritmi alusel a märgitakse sümboliga loga x . Näited logaritm log 3 81 = 4 log1/ 2 1024 = -10 alus logaritmitav algusesse eelmine slaid järgmine slaid esitluse lõpp Kümnend- ja naturaalogaritmid Logaritmi aluseks võib olla suvaline positiivne arv a 1. Kui alus a = 10, siis nimetatakse vastavat logaritmi kümnendlogaritmiks ja tähistatakse sümboliga log x (venekeelses kirjanduses lg x) . Näited log 100 = 2, sest 10 2 = 100 log 0,00001 = -5, s

Matemaatika
thumbnail
8
docx

Logaritmid

7 ¿ log 4 ( x +2 ) +log 4 ( 10-x ) =2+log 4 x 7 a ¿ log ( x-2 ) +log ( x-3 )=1-log 5 2 8 ¿ 2 log 2 x-3 logx=2 8 a ¿ log 3 x-6 log 3 x+ 9=0 9 ¿ 3 log 23 x +7 log3 x=6 9 a ¿ log 2 x-6 logx=-8 10) log x 4+ log 4 x =2 10a) log 2 x+ log x 2=2 4. Logaritmvõrratused. Et lahendada logaritmvõrratust tuleb see teisendada kujuks log a f ( x ) b või log a f ( x ) log a g(x ) , b Kui a > 1, siis võrratuse märk jääb samaks f ( x ) a , f ( x) g(x ) . Kui 0 < a < 1, siis võrratuse märk muutub vastupidiseks f ( x ) ab , f ( x) g( x ) .

Matemaatika
thumbnail
54
doc

Valemid ja mõisted

x= , y= , z= , D D D kus d1 b1 c1 a1 d1 c1 a1 b1 d1 Dx = d 2 b2 c2 , Dy = a2 d2 c2 , Dz = a2 b2 d2 . d3 b3 c3 a3 d3 c3 a3 b3 d3 2.9 Võrratus Kui kahe avaldise (arvu) vahel on võrratusmärk ( < , > , või ), siis sellist seost nimetatakse võrratuseks. Võrratuse omadused 1. Kui a > b , siis b < a . 2. Kui a > b ja b > c , siis a > c . 3. Võrratuse mõlema poolega saab liita ühe ja sama avaldise (arvu): kui a > b , siis a + c > b + c . 11 4

Matemaatika
thumbnail
33
doc

Matemaatika riigieksam

1) 0 2) 1 3) 2 4) 3 5. Leia kõigi täisarvude summa, mis jäävad lõigule [-5;7] ja kuuluvad funktsiooni y = 2 - log 2 ( 2 + 4 x - x 2 ) määramispiirkonda. 1) 7 2) 4 3) 5 4) 13 6. Leia funktsiooni suurima ja vähima väärtuse korrutis. 1) -2,25 2) 2,25 3) -2,125 4) 2,125 y = f ( x) 7. On antud funktsioonid lahenda võrratus f ( x ) < g ( x ) . y = g( x) 1) ( 0, 5 ) 2) ( -5 ; 0 ) 3) (-5;0] y = g ( x) 4) [-5;0] y = f ( x) x 8. Lahenda võrrand 3 - 2 cos =0 3 1

Matemaatika




Meedia

Kommentaarid (2)

crissy237 profiilipilt
crissy237: Aitas mind väga !
17:00 03-12-2012
Keegiteine66 profiilipilt
Keegiteine66: suht jamps
20:37 21-05-2013



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun