Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse Registreeri konto

Lineaarvõrrandi lahendamine. Ruutvõrrandi lahendamine (0)

5 VÄGA HEA
Punktid
Vasakule Paremale
Lineaarvõrrandi lahendamine-Ruutvõrrandi lahendamine #1 Lineaarvõrrandi lahendamine-Ruutvõrrandi lahendamine #2 Lineaarvõrrandi lahendamine-Ruutvõrrandi lahendamine #3 Lineaarvõrrandi lahendamine-Ruutvõrrandi lahendamine #4 Lineaarvõrrandi lahendamine-Ruutvõrrandi lahendamine #5 Lineaarvõrrandi lahendamine-Ruutvõrrandi lahendamine #6 Lineaarvõrrandi lahendamine-Ruutvõrrandi lahendamine #7 Lineaarvõrrandi lahendamine-Ruutvõrrandi lahendamine #8 Lineaarvõrrandi lahendamine-Ruutvõrrandi lahendamine #9 Lineaarvõrrandi lahendamine-Ruutvõrrandi lahendamine #10 Lineaarvõrrandi lahendamine-Ruutvõrrandi lahendamine #11 Lineaarvõrrandi lahendamine-Ruutvõrrandi lahendamine #12 Lineaarvõrrandi lahendamine-Ruutvõrrandi lahendamine #13 Lineaarvõrrandi lahendamine-Ruutvõrrandi lahendamine #14
Punktid 50 punkti Autor soovib selle materjali allalaadimise eest saada 50 punkti.
Leheküljed ~ 14 lehte Lehekülgede arv dokumendis
Aeg2012-10-30 Kuupäev, millal dokument üles laeti
Allalaadimisi 64 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor T . Õppematerjali autor

Märksõnad

Sarnased õppematerjalid

thumbnail
3
doc

Ruutvõrrandi lahendamine

Ruutvõrrandi lahendamine - b ± b 2 - 4ac Ruutvõrrandi ax2 + bx + c = 0 lahendivalem on x = . 2a Võrrandi lahendamiseks asendame lahendivalemisse a, b ja c väärtused. Näide 1. Lahendame ruutvõrrandi 5x2 + 6x + 1 = 0. Selles võrrandis a = 5, b = 6 ja c = 1. Asendame need arvud lahendivalemisse, saame - 6 ± 6 2 - 4 5 1 - 6 ± 36 - 20 - 6 ± 16 - 6 ± 4 x= = = = . 2 5 10 10 10 -6+4 -2 - 6 - 4 - 10 Siit x1 = = = -0,2 ja x2 = = = -1. 10 10 10 10 Näide 2. Lahendame ruutvõrrandi 2x2 + x - 15 = 0.

Matemaatika
thumbnail
3
docx

Lineaarvõrrandisüsteemide lahendamine

Lineaarvõrrandisüsteemide lahendamine · Lineaarvõrrandisüsteemi üldkuju a1 x + b1 y = c1 a1 x + b1 y = c1 a2 x + b2 y = c2 a2 x + b2 y = c2 · Lineaarvõrrandisüsteemide lahendamisvõtted 1. Asendusvõte 13 + 2 y = 9 x 7x = 3y 3y 7x = 3y x = 7 3 y 13 + 2 y = 9 7 27 y 13 + 2 y = 7 13 - y = -13 y = 7 7 3 7 x= =3 7 Kontroll : v1 = 13 + 2 7 = 13 + 14 = 27 p1 = 9 3 = 27 v1 = p1 v2 = 7 3 = 21 x=3 p2 = 3 7 = 21 Vastus : y=7 v2 = p2 2. Liitmisvõte 4 x + 3 y = 21

Matemaatika
thumbnail
1
pdf

Ruutvõrrandi lahendamine

Võrrandid ja võrrandisüsteem Ruutvõrrandi lahendamine 1.Lahenda võrrand: a) 3x2 ­ 20x + 25 = 0 b) x2 + 4x ­ 5 = 0 Lahendus a: x,= 20±20²-4 2 3 *3*25 * x,= 20±100 6 20±10 x,= 6 x= 20+10 6 = 30 6 =5 x= 20-10 6 = 10 6 = 1 23 Kontroll a: x=5 Vasak pool: 3 . 52 ­ 20 . 5 + 25 = 75 ­ 100 + 25 = 0 Vasak pool on võrdne parema poolega. x=1 23 Vasak pool: 3*( 53 )²-20* 53 +25= 3*925 - 100 3 +25= - 75 3 +25= -25+25=0Vasak pool on võrdne parema poolega. Vastus: x= 5 ja x= 53 Lahendus b: x,= -2 ± 2² + 5 = -2 ± 9 = -2 ± 3 x= -2+3= 1 x= -2-3= -5 Kontroll: x, = 1 Vasak pool: 12 + 4 . 1 ­ 5 = 1 + 4 ­ 5 = 0. Parem pool on võrdne

Algebra I
thumbnail
17
docx

VÕRRANDID (mõisted)

VÕRRANDID Võrrand on muutujaid sisaldav võrdus, milles üks või mitu muutujat loetakse tundmatuks (otsitavaks). Tundmatu väärtust, mille korral võrrand osutub samasuseks (tõeseks arvvõrduseks), nimetatakse võrrandi lahendiks. Võrrandil võib olla üks või mitu lahendit, kuid neid võib olla ka lõpmata palju või mitte ühtegi. Lahendada võrrand tähendab leida tundmatu kõik need väärtused, mis rahuldavad võrrandit (st tundmatu asendamisel lahendiga muutub võrrand samasuseks). Võrrandi lahendamisel püütakse võrrandit teisendada nii, et iga uus võrrand oleks eelmisega samaväärne. Lubatud teisendused (võrrandi põhiomadused) on järgmised: 1) võrrandi pooli võib vahetada; 2) võrrandi mõlemale poolele võib liita või mõlemast poolest lahutada ühe ja sama arvu või muutujat sisaldava avaldise (mis omab mõtet võrrandi kogu määramis- piirkonnas), see annab sisuliselt teisenduse, mida tuntakse kui võrrandi liikmete teisele poole

Matemaatika
thumbnail
100
pdf

MATEMAATIKA TÄIENDUSÕPE

MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS I OSA SISUKORD 1. ARVUHULGAD …………………………………………………… 2 2. ARITMEETIKA ……………………………………………….…… 3 2.1 Mõningate arvude kõrgemad astmed ………………………….……. 3 2.2 Hariliku murru põhiomadus ………………………………….…….. 3 2.3 Tehetevahelised seosed ……………………………………….…….. 3 2.4 Tehted harilike murdudega ………………………………….……… 4 2.5 Tehete põhiomadused ……………………………………….……… 5 2.6 Näited tehete kohta positiivsete ja negatiivsete arvudega …….…….. 5 2.7 Näited tehete kohta ratsionaalarvudega ……………………….……. 6 2.8 Protsent ja promill ……………�

Matemaatika
thumbnail
816
pdf

Matemaatika - Õhtuõpik

Matemaatika õhtuõpik 1 2 Matemaatika õhtuõpik 3 Alates 31. märtsist 2014 on raamatu elektrooniline versioon tasuta kättesaadav aadressilt 6htu6pik.ut.ee CC litsentsi alusel (Autorile viitamine + Mitteäriline eesmärk + Jagamine samadel tingimustel 3.0 Eesti litsents (http://creativecommons.org/licenses/by-nc-sa/3.0/ee/). Autoriõigus: Juhan Aru, Kristjan Korjus, Elis Saar ja OÜ Hea Lugu, 2014 Viies, parandatud trükk Toimetaja: Hele Kiisel Illustratsioonid ja graafikud: Elis Saar Korrektor: Maris Makko Kujundaja: Janek Saareoja ISBN 978-9949-489-95-4 (trükis) ISBN 978-9949-489-96-1 (epub) Trükitud trükikojas Print Best 4 Sisukord osa 0 – SISSEJUHATUS . .................... 17 OSA 2 – arvud ..................................... 75 matemaatika meie ümber ................... 20 arvuhulgad ....................

Matemaatika
thumbnail
8
docx

Lineaarvõrrandid- ja võrratused

LINEAARVÕRRANDID ja VÕRRATUSED LINEAARVÕRRAND - võrrand, milles tundmatu suurim astendaja (peale lihtsustamisi) on 1 ja kus ei esine tundmatuga jagamist. Iga lineaarvõrrandi saab teisendada kujule ax + b = 0 või ax = b (x on tundmatu; a ja b on arvud) Lineaarvõrrandi lahendamisel kasutatakse võrrandi põhiomadusi ning viiakse võrrand järjest lihtsamale kujule. Soovitatav teisenduste järjekord oleks seejuures: 1. Kui võrrand sisaldab murde, vabanetakse murdudest, korrutades võrrandi pooled läbi nimetajate vähima ühiskordsega. 2. Kui võrrand sisaldab sulge, siis avatakse sulud. 3. Kui võrrand ei sisalda murde ega sulge, viiakse kõik tundmatuga liikmed võrrandi vasakule ning kõik arvud võrrandi paremale poolele. 4. Kui vastavad liikmed on õigele poole viidud, koondatakse võrrandi vasakul ja paremal poolel olevad liikmed (võrrand saab kuju ax = b). 5. Kui võrrand on kujul ax = b, siis jagatakse võrrandi pooled tundmatu ees oleva arvuga (arvuga a). Võrratuse

Matemaatika
thumbnail
246
pdf

Funktsiooni graafik I õpik

1 10. klass Viljandi Täiskasvanute Gümnaasium KORDAMINE: FUNKTSIOONI GRAAFIK I Joonistel on kuue funktsiooni graafikud. Tee kindlaks, missuguste funktsioonidega on tegemist. 1 2 3 © Allar Veelmaa 2014 2 10. klass Viljandi Täiskasvanute Gümnaasium KORDAMINE: FUNKTSIOONI GRAAFIK II © Allar Veelmaa 2014 3 10. klass Viljandi Täiskasvanute Gümnaasium REAALARVUDE PIIRKONNAD Kuna erinevates õpikutes kasutatakse reaalarvude piirkondade märkimiseks erinevaid tähistusi, siis oleks kasulik teada mõlemat varianti. Nimetus Tingimus Esimene

Matemaatika




Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun