Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
Ega pea pole prügikast! Tõsta enda õppeedukust ja õpi targalt. Telli VIP ja lae alla päris inimeste tehtu õppematerjale LOE EDASI Sulge

Lineaarsete võrratuste süsteemid - sarnased materjalid

võrratus, ühisosa, lahendihulk, lahendite, lahendiks, lahendame, nimetaja, määramispiirkond, lepikult, kummagi, murrud, läheme, murd, jagatis, kitsendavad, avaldis, annabki
thumbnail
14
pdf

Võrratused

2. tr. Tallinn, 1984 Litvinenko, V. N. jt Praktikum po reseniju matematitseskih zadats. Moskva, 1984 (vene keeles). 2 VÕRRATUSED Kaks algebralist avaldist, mis on omavahel seotud märkidega >, või < , moodustavad võrratuse. Tundmatuid sisaldava võrratuse korral tekib selle lahendamise probleem. Vaatleme siin vaid ühe tundmatuga võrratusi. Sellise võrratuse lahendiks nimetatakse tundmatu väärtust, mille puhul võrratus on rahuldatud, st mille asetamisel võrratusse tundmatu asemele saame õige arvulise võrratuse. Lahendada võrratus tähendab leida selle kõik lahendid. Kaks, kolm jne võrratust, mis sisaldavad üht ja sama tundmatut, võivad moodustada võrratuste süsteemi. Lahendada võrratuste süsteem tähendab leida nende võrratuste ühise tundmatu kõik sellised väärtused, mis rahuldavad korraga selle süsteemi kõiki võrratusi.

Matemaatika
138 allalaadimist
thumbnail
100
pdf

MATEMAATIKA TÄIENDUSÕPE

. 23 3.10 Näiteid lineaarvõrrandite ja ruutvõrrandite lahendamisest ning ruutkolmliikmete teguriteks lahutamisest ……………………..….… 24 3.11 Determinandid …………………………………………………..….. 27 3.12 Lineaarvõrrandisüsteem ……………………………………….….… 27 3.13 Näited lineaarvõrrandisüsteemide lahendamisest ……………..……. 28 3.14 Võrratus ………………………………………………………...…… 31 3.15 Lineaarvõrratus ………………………………………………..…… 31 3.16 Lineaarne võrratussüsteem ……………………………………...….. 32 3.17 Ruutvõrratus …………………………………………………….….. 33 3.18 Kõrgema astme võrratus ……………………………………………. 34 3

Matemaatika
75 allalaadimist
thumbnail
4
pdf

Võrratussüsteemid. Funktsiooni määramispiirkond.

Võrratussüsteemid. Funktsiooni määramispiirkond. Kui tuleb lahendada võrratussüsteem, mis sisaldab n ühe muutujaga võrratust, siis  lahendatakse ükshaaval kõik süsteemi kuuluvad võrratused;  süsteemi lahendihulgaks on üksikute võrratuste lahendihulkade ühisosa. Näiteks,    k  4,5  2k  9  0   k 3 Lahendame võrratussüsteemi  | : (-2)  (k  3)( k  4)  0  2 0

võrrandid
38 allalaadimist
thumbnail
17
pdf

Lineaarvõrratused, ruutvõrratused ja murdvõrratused

Arutelu lihtsustamiseks on kasulik võrratust teisendada nii (vajadusel teguriga ­1 korrutades), et pealiikme kordaja a > 0. Sel juhul avaneb funktsiooni graafikuks olev parabool alati ülespoole, mistõttu on vaja leida vaid ruutvõrrandi ax2 + bx + c = 0 lahendid ning läbi nende skitseerida graafik. Kui neid lahendeid pole, siis - võrratuse ax2 + bx + c > 0 (või 0) lahendihulgaks on hulk R - võrratuse ax2 + bx + c < 0 (või 0 ) lahendihulgaks on tühi hulk Näide 1 Näide Lahendame võrratuse 6 + x ­ x2 < 0. Lahendus Korrutame selle võrratuse mõlemaid pooli arvuga ­1, saame võrratuse x2 x 6 0 Viimase lahendamiseks leiame võrrandi x2 x 6 0 lahendid, milleks on x1 = -2 ja x2 = 3. Näide 1 Kanname need lahendid x-teljele ning tõmbame läbi punktide ­2 ja 3 parabooli, mis avaneb ülespoole. -2 3 x Viirutame teisendusega saadud abivõrratuse positiivsuspiirkonna

Matemaatika
85 allalaadimist
thumbnail
246
pdf

Funktsiooni graafik I õpik

© Allar Veelmaa 2014 5 10. klass Viljandi Täiskasvanute Gümnaasium LINEAAR- JA RUUTVÕRRANDI LAHENDAMINE 1) Lineaarvõrrandi ax + b = 0 lahendamine b Kui a ≠ 0, siis lahend on x   a Kui a = 0, siis on kaks võimalust: a) kui b = 0, siis võrrandi 0 · x = 0 lahendiks sobib iga arv. b) kui b ≠ 0, siis võrrandil 0 · x = b lahendeid ei ole. 2) Ruutvõrrandi ax2 + bx + c = 0 lahendamine: Kui a = 1, siis sellist võrrandit nimetatakse taandatud ruutvõrrandiks ja esitatakse kujul x2 + px + q = 0 ning see lahendatakse valemiga p p2 x1;2    q 2 4

Matemaatika
79 allalaadimist
thumbnail
6
docx

Ruutvõrratused

2.4 RUUTVÕRRATUS Ühe muutujaga ruutvõrratuse üldkuju on ax2 + bx + c > 0, kus a 0. Märgi > asemel võib võrratuses olla ka üks märkidest <, , . Ruutvõrratuse lahendamiseks 1) lahendame ruutvõrrandi ax2 + bx + c = 0; 2) skitseerime parabooli y = ax2 + bx + c; 3) leiame jooniselt, kus funktsiooni väärtused positiivsed, kus negatiivsed. Ruutfunktsiooni y = ax2 + bx + c graafik on parabool. Kui a > 0, siis avaneb parabool ülespoole. Kui a < 0, siis avaneb parabool allapoole. Kui lahendame ruutvõrrandi ax2 + bx + c = 0, siis on kolm erinevat võimalust: A) Diskriminant D = b2 ­ 4ac > 0. Parabool lõikab sel juhul x ­ telge kahes erinevas punktis. ax2 + bx + c > 0 L = (­ ;x1) (x2; ) ax2 + bx + c >0 L = (x1; x2) 1 B) Kui diskriminant D = 0, siis on ruutvõrrandil kaks võrdset reaalarvulist lahendid

Matemaatika
90 allalaadimist
thumbnail
8
doc

Matemaatika praktikumi töö

Ruutkolmliikme tegurdamine -> a(x-x1)(x-x2)=0 Näide: 2x2+5x-7=0 x1=1 x2=-3.5 2(x-1)(x+3,5)=0 Ärge unustage tegurdatud kujule ette lisada ruutliikme kordajat! Ruutvõrrandi graafiku parabooli haripunkti koordinaatide leidmine: xh=-b/2a VÕI xh=(x1+x2)/2 yh saab arvutada parabooli võrrandist Murdvõrrand Murdvõrrandiks nimetatakse võrrandit, kus nimetaja sisaldab muutujat Näide: (x+1)/(x+2)=0 Murdvõrrandit EI TOHI muutujaga läbi korrutada! Lahendamiseks viiakse kõik liikmed vasakule poole ning ühisele murrujoonele. Näide: Seejärel võrdustatakse lugeja nulliga, samal ajal väites, et nimetaja ei tohi olla 0. Antud juhul: x2-x-6=0 ja x-3 0 -> x 3

Matemaatika
23 allalaadimist
thumbnail
8
doc

VÕRRATUSED

a >b a+m>b+m a b k a > k b, kui k > 0 a < b k a < k b, kui k > 0 4. Kui võrratuse mõlemad pooled korrutada või jagada ühe ja sama negatiivse reaalarvuga, muutub võrratusmärk vastupidiseks: a > b m a < m b, kui m < 0 a < b m a > m b, kui m < 0 ÜHE MUUTUJA LINEAARVÕRRATUSED Kui võrratus sisaldab tundmatut, siis saab teda lahendada, s.t. leida tundmatu kõik need väärtused, mille puhul antud võrratusest saame õige lause. Need tundmatu väärtused moodustavad võrratuse lahendihulga. Näide 1. Lahendada võrratus 2x ­ 8 > 7. Viime 8 teisele poolele 2x > 7 + 8 2x > 15 jagame 2-ga (>0) x > 7,5 Võrratuse lahendiks on kõik arvud, mis on suurem kui 7,5. Vastus: x (7,5; ).

Matemaatika
10 allalaadimist
thumbnail
3
doc

Funktsioon ja funktsiooni määramispiirkonnad

lõpliku arvu aritmeetiliste tehete ja liitfunktsiooni moodustamise teel, nimetatakse elementaarfunktsioonideks. x + log 2 x Näiteks y = . 2x + 1 Järgnevates ülesannetes leiame funktsiooni nn. loomuliku määramispiirkonna, mis lähtub funktsiooni analüütilisest avaldisest. 3x + 1 Ülesanne 1. Leida funktsiooni y = määramispiirkond. x2 -1 Lahendus. 3x + 1 Murd on määratud, kui selle murru nimetaja ei ole võrdne nulliga. x2 -1 Sellepärast leiame antud funktsiooni määramispiirkonna tingimusest x 2 - 1 0 ehk 1 [tuletame meelde, et ka ( -1) = 1 ]. 2 x2 1 ehk x Seega, kui tähistame määramispiirkonna tähega X, siis X = ( - ; - 1) U ( -1;1) U ( 1; ) .

Matemaatika
345 allalaadimist
thumbnail
54
doc

Valemid ja mõisted

x= , y= , z= , D D D kus d1 b1 c1 a1 d1 c1 a1 b1 d1 Dx = d 2 b2 c2 , Dy = a2 d2 c2 , Dz = a2 b2 d2 . d3 b3 c3 a3 d3 c3 a3 b3 d3 2.9 Võrratus Kui kahe avaldise (arvu) vahel on võrratusmärk ( < , > , või ), siis sellist seost nimetatakse võrratuseks. Võrratuse omadused 1. Kui a > b , siis b < a . 2. Kui a > b ja b > c , siis a > c . 3. Võrratuse mõlema poolega saab liita ühe ja sama avaldise (arvu): kui a > b , siis a + c > b + c . 11 4

Matemaatika
1099 allalaadimist
thumbnail
8
docx

Lineaarvõrrandid- ja võrratused

võrrandi vasakule ning kõik arvud võrrandi paremale poolele. 4. Kui vastavad liikmed on õigele poole viidud, koondatakse võrrandi vasakul ja paremal poolel olevad liikmed (võrrand saab kuju ax = b). 5. Kui võrrand on kujul ax = b, siis jagatakse võrrandi pooled tundmatu ees oleva arvuga (arvuga a). Võrratuse saame siis, kui kirjutame kahe avaldise vahele võrratusmärgi <, >, ≤ , ≥ . 2a + 4 < 16 + 5a Arvvõrratus on võrratus, mille mõlemal pool on arvavaldised. 45 - 3∙6 > 2 + 8 Arvvõrratus on kas tõene või väär. -4 < 2 (tõene), 9 > 0 (väär) Võrratus võib sisaldada ka tundmatuid. 2x - 3,4 > 6 + 5x Tundmatu seda väärtust, mille korral saame antud võrratusest tõese lause, nimetatakse võrratuse lahendiks. 2x > 9; x > 4,5; x = 5 on võrratuse lahend Võrratuse kõik lahendid moodustavad võrratuse lahendihulga. x > 4,5 on lahendihulk

Matemaatika
33 allalaadimist
thumbnail
5
doc

Matemaatika kordamine 2 9.klass

2 2 m x + 2x 2x + 4 x 2 7x - 4 2 x + 1 x -1 55. + = ( x - 2)( x + 3) x + 3 x - 2 x+ y = 5 46. x + y = 13 2 2 56. Lahenda võrratus 57. 3 x - 2( 2 x + 5) > 2( 3 x +1) - 40 58. 2( x - 3) - 3( 2 x +1) > x -19 59. 5( 2 x + 6 ) - 3( 4 - 3 x ) < 15 x + 28 kujuta selle lahendihulk arvteljel. Leia lahendihulgast kõik täisarvud, mis on suuremad kui -2. 60. 4( 5 - 2 x ) - 2( 3 x + 4 ) > 6 -18 x kujuta selle lahendihulk arvteljel. Leia lahendihulgast kõik täisarvud, mis on väiksemad kui 3. 61. Leia võrratuse 2 x - 3 < 5 kõik positiivsed täisarvulised lahendid. Esita vastus arvuhulgana. 62

Matemaatika
166 allalaadimist
thumbnail
108
doc

MATEMAATIKA TÄIENDÕPE: Valemid

x , y , z , D D D kus d1 b1 c1 a1 d1 c1 a1 b1 d1 Dx  d 2 b2 c2 , Dy  a2 d2 c2 , Dz  a2 b2 d2 . d3 b3 c3 a3 d3 c3 a3 b3 d3 2.9 Võrratus Kui kahe avaldise (arvu) vahel on võrratusmärk (  ,  ,  või  ), siis sellist seost nimetatakse võrratuseks. Võrratuse omadused 1. Kui a  b , siis b  a . 2. Kui a  b ja b  c , siis a  c . 3. Võrratuse mõlema poolega saab liita ühe ja sama avaldise (arvu): kui a  b , siis a  c  b  c . 11 4

Algebra I
60 allalaadimist
thumbnail
12
pdf

Matemaatika eksami teooria 10. klass

· Erinimeliste algebraliste murdude liitmisel (lahutamisel) laiendatakse need esmalt ühenimelisteks. Ühiseks nimetajaks valitakse korrutis, mille tegureiks on üksikute murdude nimetajate kõigi erinevate tegurite kõrgeimad astmed. 2.2 Irratsionaalavaldised e juuravaldised Muutujatel on avaldistes vaid sellised väärtused, mille korral kõik juuritavad ja vastavad juured on mittenegatiivsed 2.3 Irratsionaalavaldiste tegurdamine 2.4 Murru nimetaja vabastamine irratsionaalsusest e juurte kaotamine murru nimetajas 2.5 Irratsionaalavaldiste lihtsustamine Toimime samamoodi nagu ratsionaalavaldiste puhul ­ sooritame kõik avaldises nõutud tehted, arvestades tehete järjekorda, ning anname tulemusele algebralise murru, võimalusel täisavaldise kuju. Murru nimetaja vabastatakse irratsionaalsusest. Võrrandid ja võrrandisüsteemid 3.1 Võrdus, samasus, võrrand. Lineaar- ja ruutvõrrandid

Matemaatika
79 allalaadimist
thumbnail
40
doc

Keskkooli matemaatika raudvara

............................................................... 9 Ruutjuur................................................................................................................................9 Arvu n-es juur.....................................................................................................................10 Tehted juurtega...................................................................................................................10 Murru nimetaja vabastamine irratsionaalarvust................................................................. 10 Ratsionaalarvulise astendajaga aste........................................................................................11 Tehted astmete ja juurtega......................................................................................................11 Irratsionaalavaldise teisendamine...........................................................................................11

Matemaatika
1453 allalaadimist
thumbnail
8
docx

Logaritmid

2 x +7< 3 x-4 . Arvestame, et mõlemad logaritmitavad on positiivsed, seega saame süsteemi kolmest võrratusest { { { -x <-11 x>11 2 x +7<3 x-4 x >-3,5 x >-3,5 2 x +7> 0 . 4 4 3 x-4>0 x> x> 3 3 Lahendite ühiseks osaks on poollõik x> 11 , mis on ülesande vastuseks. Vastus: x (11 ; ) . Lahendada võrratus: 1¿ log ( x +3) log 2 x 1 a ¿ log 1 x log 1 (10 x-5) 2 2 2 ¿ log 1 ( 2 x-1)>log 1 (x +1) 2 a ¿ log 0,1 (3 x+ 1)< log 0,1 (x-2) 2 2 3 ¿ log ( x -2 )-log ( 27-x)0 3 a ¿ ln ( x-1 )-ln ( x +2,5)> 0

Matemaatika
23 allalaadimist
thumbnail
33
doc

Matemaatika riigieksam

1) 0 2) 1 3) 2 4) 3 5. Leia kõigi täisarvude summa, mis jäävad lõigule [-5;7] ja kuuluvad funktsiooni y = 2 - log 2 ( 2 + 4 x - x 2 ) määramispiirkonda. 1) 7 2) 4 3) 5 4) 13 6. Leia funktsiooni suurima ja vähima väärtuse korrutis. 1) -2,25 2) 2,25 3) -2,125 4) 2,125 y = f ( x) 7. On antud funktsioonid lahenda võrratus f ( x ) < g ( x ) . y = g( x) 1) ( 0, 5 ) 2) ( -5 ; 0 ) 3) (-5;0] y = g ( x) 4) [-5;0] y = f ( x) x 8. Lahenda võrrand 3 - 2 cos =0 3 1

Matemaatika
526 allalaadimist
thumbnail
16
doc

Matemaatiline analüüs 2, kollokvium 2

Koonduvus normi järgi. Ühtlane koonduvus.Weierstraßi tunnus................................................................................................ 6 8.Astmeread. Astmerea koonduvusraadiuse mõiste. Koonduvusraadiuse leidmine. Abeliteoreem: ühtlase ja absoluutse koonduvuse seos koonduvusraadiusega....................... 8 9. Astmeridade liikmeti diferentseerimine ja integreerimine. Astmeridade rakendusi..............9 10. Fourier' rida ortogonaalse süsteemi korral. Besseli võrratus ja Parsevali võrdus. Fourier' rida ortogonaalse süsteemi korral:.......................................................................................... 9 11.Fourier' rida ortogonaalsete polünoomide süsteemi järgi Lehendre'i või Tsebõsovi polünoomide näitel................................................................................................................ 11 12.Fourier' rida trigonomeetrilise süsteemi järgi. Fourier' siiunus- ja koosinusrida. Fourier' rea komplekskuju...

Matemaatiline analüüs 2
693 allalaadimist
thumbnail
16
doc

Matemaatiline analüüs 2 kollokvium 2

Koonduvus normi järgi. Ühtlane koonduvus.Weierstraßi tunnus................................................................................................ 6 8.Astmeread. Astmerea koonduvusraadiuse mõiste. Koonduvusraadiuse leidmine. Abeliteoreem: ühtlase ja absoluutse koonduvuse seos koonduvusraadiusega....................... 8 9. Astmeridade liikmeti diferentseerimine ja integreerimine. Astmeridade rakendusi..............9 10. Fourier' rida ortogonaalse süsteemi korral. Besseli võrratus ja Parsevali võrdus. Fourier' rida ortogonaalse süsteemi korral:.......................................................................................... 9 11.Fourier' rida ortogonaalsete polünoomide süsteemi järgi Lehendre'i või Tsebõsovi polünoomide näitel................................................................................................................ 11 12.Fourier' rida trigonomeetrilise süsteemi järgi. Fourier' siiunus- ja koosinusrida. Fourier' rea komplekskuju...

Matemaatiline analüüs 2
219 allalaadimist
thumbnail
17
docx

VÕRRANDID (mõisted)

VÕRRANDID Võrrand on muutujaid sisaldav võrdus, milles üks või mitu muutujat loetakse tundmatuks (otsitavaks). Tundmatu väärtust, mille korral võrrand osutub samasuseks (tõeseks arvvõrduseks), nimetatakse võrrandi lahendiks. Võrrandil võib olla üks või mitu lahendit, kuid neid võib olla ka lõpmata palju või mitte ühtegi. Lahendada võrrand tähendab leida tundmatu kõik need väärtused, mis rahuldavad võrrandit (st tundmatu asendamisel lahendiga muutub võrrand samasuseks). Võrrandi lahendamisel püütakse võrrandit teisendada nii, et iga uus võrrand oleks eelmisega samaväärne. Lubatud teisendused (võrrandi põhiomadused) on järgmised: 1) võrrandi pooli võib vahetada;

Matemaatika
14 allalaadimist
thumbnail
9
doc

Põhivara 7. klass

nt: 2 < 5 | +10 12 < 15 2) mõlemaid pooli korrutada või jagada ühe ja sama positiivse arvuga, jääb võrratusmärk samapidiseks. nt: 8 < 10 | : 2 4<5 3) mõlemaid pooli korrutada ühe ja sama negatiivse arvuga, siis märk muutub vastupidiseks. nt: 8 < 10 | (-2) -16 > -20 5 Võrratuse lahendamine: Võrratust lahendame sarnaselt võrrandi lahendamisele. Esinevad mõningad erinevused: 1. tundmatul on mitu väärtust 2. rida omadusi, mis kehtivad ainult võrratuse kohta Näide: 5x + 3 > 2x ­ 9 5x ­ 2x > -9 ­ 3 3x > -12 |: 3 x>-4 Suhe ja mõõtkava: Geograafilise kaardi nurgast leiame mõõtkava, kus on märgitud kahe arvu suhe. nt: 1:30000 st. et 1cm kaardil vastab 30000cm (300m) looduses. Kahe arvu a ja b suhteks nimetatakse nende jagatist a:b.

Matemaatika
277 allalaadimist
thumbnail
26
pdf

Matemaatilise analüüsi kollokvium nr.1

Muutujavahetus päratus integraalis ( ). Kui arvrea korral on täidetud tingimused, et f(k)=ak, f(x)≥0 (xϵ[1,lõpmatus)) f(x) kahaneb (xϵ[1,lõpmatus)), siis rida ja päratu intergraal kas koonduvad või hajuvad samaaegselt. 3. Positiivsete arvridade võrdlustunnused. Võrdlus harmoonilise reaga. Positiivseks arvreaks nimetatakse arvrida kujul 1.Kui positiivsete arvridade Σk=1 ak ja Σk=1bk üldliikmete vahel kehtib võrratus ak≤bk, siis  rea Σk=1bk koondumisest järeldub rea Σk=1 ak koondumine;  rea Σk=1 ak hajumisest järeldub rea Σk=1bk hajumine. 2.Kui Σk=1 ak ja Σk=1bk on positiivsed arvread ja eksisteerib lõplik nullist erinev piirväärtus nende üldliikmete ak ja bk suhtes limk- ∞ ak/bk =γ≠0, siis read koonduvad või hajuvad üheaegselt Tõestus. Lähtuded jada piirväärtuse definitsioonidt, leiame Võime piirduda juhuga k0=1. Et Siis saame tulemuseks võrratuste ahela

Matemaatiline analüüs 2
114 allalaadimist
thumbnail
12
pdf

8. klassi raudvara: PTK 4

normaalkujul 3.Kahe tundmatuga võrrandi lahend - Ül.909 järjestatud arvupaar; lõpmatu hulk Võrrand 4u+0,5v=2 lahendeid; võrrandi ax+by=c lahend Antud u {1;-0,5;-3,5} kirjutatakse kujul: Leida võrrandi lahendid x=p y=q või need kaks võrdust üksteise alla ja ette loogeline sulg või (p;q) 1)kui u=1, siis 4 1+0,5v=2; 0,5v=2-4; 0,5v=-2; v=-4; lahend on (1;-4) NB lahendite leidmisel vajadusel kasutada 2)kui u=-0,5, siis 4 (-0,5)+0,5v=2; ühe tundmatu avaldamist teise kaudu 0,5v=2+2; 0,5v=4; v=8; lahend on (lihtsam arvutada) (-0,5;8) 3)kui u=-3,5, siis 4 (-3,5)+0,5v=2; 0,5v=2+14; 0,5v=16; v=32; lahend on (-3,5;32)

Matemaatika
139 allalaadimist
thumbnail
23
doc

Maatriksi algebra

............................................ a i1 x1 +a i 2 x 2 +... +a in x n = b1 , .............................................. a m1 x1 + a m 2 x 2 +... + a mn x n = bm kus aik R ­ süsteemi kordajad, xk R ­ süsteemi tundmatud, bi R ­ süsteemi vabaliikmed. x1 =1 x = 2 2 Süsteemi lahendiks nimetatakse suurusi , ........... x n =n mis rahuldavad antud süsteemi. Süsteemi on võimalik kirjutada maatriksite abil: A = (aik) ­ süsteemi maatriks, mis koosneb tundmatute kordajatest, B = (bi) _ vabaliikmete maatriks-veerg, X = (xk) ­ tundmatute maatriks-veerg. Nende maatriksite abil on lineaarse võrrandisüsteemi kuju AX = B.

Kõrgem matemaatika
188 allalaadimist
thumbnail
28
docx

MAATRIKSALGEBRA

...... a m1 x1 + a m 2 x 2 + ... + a mn x n = bm , kus aik R ­ süsteemi kordajad, xk R ­ süsteemi tundmatud, bi R ­ süsteemi vabaliikmed. x1 = 1 x = 2 2 ........... x = n Süsteemi lahendiks nimetatakse suurusi n , mis rahuldavad antud süsteemi. Süsteemi on võimalik kirjutada maatriksite abil: A = (aik) ­ süsteemi maatriks, mis koosneb tundmatute kordajatest, B = (bi) _ vabaliikmete maatriks-veerg, X = (xk) ­ tundmatute maatriks-veerg. Nende maatriksite abil on lineaarse võrrandisüsteemi kuju AX = B. a. Antud võrrandisüsteemil võib leiduda ainult üks lahend, kui m = n ja DA 0. b

Matemaatika
27 allalaadimist
thumbnail
6
doc

Reaalarvud. Võrrandid

2.6 Võrrandid Lineaarvõrrand Murdvõrrand - võrrand, milles tundmatu ax + b = 0 esineb murru nimetajas. b Murru väärtus on null siis ja ainult siis, kui x = - , kui a 0 ; a murru lugeja on null ja nimetaja ei ole null. lahend puudub, kui a = 0 ja b 0 ; lahendeid on lõpmata palju, kui a = 0 ja b = 0 . L L= 0 = 0 N N 0 Ruutvõrrand Juurvõrrand - võrrand, milles tundmatu

Matemaatika
297 allalaadimist
thumbnail
12
pdf

Murd- ja juurvõrrand

Lahendada võrrand 20 x 3 x 3 Lahendus Viime vasakul pool võrdusmärki olevad avaldised ühisele murrujoonele: x 2 x 2 x 2( x 3) x2 x 6 0 0 x2 x 6 0 x 3 x 3 Saadud ruutvõrrandi lahendid on: x1 2, x2 3. Neist x1 2 on esialgse võrrandi lahend, x2 3 on aga võõrlahend (nimetaja on x = 3 korral null). Vastus. Võrrandi lahendiks on x = ­2. algusesse eelmine slaid järgmine slaid esitluse lõpp Juurvõrrandi definitsioon ja lahendamine Juurvõrrandiks nimetatakse võrrandit, milles muutuja esineb juuritavas. Näited Võrrandid 4 x 1 4 x 8 ja x 2 1 on juurvõrrandid, kuid võrrand x 7 2 3 ei ole juurvõrrand. Juurvõrrandi lahendamiseks astendatakse enne sobivalt teisendatud võrrandi mõlemat poolt ühe ja sama astendajaga.

Matemaatika
47 allalaadimist
thumbnail
63
doc

Põhikooli matemaatika kordamine

NÄIDE 2. Kui võrdhaarse kolmnurga kaatetite pikkus on v cm, s.o. AC = BC = v (vt joonist), B C A siis selle kolmnurga pindala vv 1 2 S v . 2 2 Saadud valem 1 S v2 2 esitab seost antud kolmnurga kaateti pikkuse v ja pindala S vahel. Edasi vaatame ülesandeid. 1. On antud ruutfunktsioon y = 3x2, kus x Z ja 4 x 2 . Koosta muutujate x ja y vastavate väärtuste tabel ning esita selle ruutfunktsiooni määramispiirkond ja väärtuste piirkond nende elementide loeteludena. Lahendus: On antud ruutfunktsioon y = 3x2, kus x Z ja 4 x 2 . Kui x = ­ 4, siis y = 3 . (­ 4)2 = 3 . 16 = 48, x = ­ 3, siis y = 3 . (­ 3)2 = 3 . 9 = 27; x = ­ 2, siis y = 3 . (­ 2)2 = 3 . 4 = 12; x = ­ 1, siis y = 3 . (­ 1)2 = 3 . 1 = 3; x = 0, siis y = 3 . 02 = 3 . 0 = 0; x = 1, siis y = 3 . 12 = 3 . 1 = 3; x = 2, siis y = 3 . 22 = 3 . 4 = 12.

Matemaatika
91 allalaadimist
thumbnail
8
docx

EKSPONENT- JA LOGARITMFUNKTSIOONID NING -VÕRRANDID

xm Pea meeles! x m n xm * xn , xmn xn , x x mn x m n n m , log x n n log x 3 x 2 x 1 Näide 2. Lahendame eksponentvõrrandi 0,2 25 , teisendades selle võrrandiks, mille mõlemad pooled on ühe ja sama arvu astmed. 1 Et 0,2 5 51 ja 25 5 , siis saab võrrand kuju 5 2 1 3 x

Matemaatiline analüüs 1
45 allalaadimist
thumbnail
27
ppt

Funktsioonid ja nende graafikud

Funktsioonid ja nende graafikud © T. Lepikult, 2010 Funktsioon Kui muutuva suuruse x igale väärtusele, mis kuulub tema muutumispiirkonda, vastab teise suuruse y üks kindel väärtus, siis öeldakse, et y on x funktsioon. Asjaolu, et üks muutuja on teise funktsioon, tähistatakse y = f(x). Näited: Kuubi ruumala on tema serva pikkuse funktsioon, suusataja poolt läbitud teepikkus on aja funktsioon, vedru deformatsioon on tõmbejõu funktsioon jne. Funktsiooni argument

Matemaatika
135 allalaadimist
thumbnail
43
pdf

Keskkooli lõpueksam (2008)

8 9 III 1) Leiame funktsiooni y = x3 - 3x2 - 2 kasvamis- ja kahanemisvahemikud, st vahemikud, kus vastavalt f x 0 ja f x 0 . Leiame funktsiooni y = x3 - 3x2 - 2 tuletise y = 3x2 ­ 6x. Kasvamisvahemike leidmiseks lahendame võrratuse 3x2 ­ 6x > 0. Selleks leiame tuletise nullkohad: 3x2 ­ 6x = 0 x1 0 , x 2 2 ; skitseerime parabooli, arvestades, et ruutliikme kordaja on 3 > 0, seega parabool avaneb üles. y >0 y >0 x 0 2 y <0

Algebra ja Analüütiline...
778 allalaadimist
thumbnail
32
doc

Matemaatika I küsimused ja mõisted vastustega

...................6 4. Funktsiooni mõiste, funktsiooni esitusviisid. .............................................................................. 6 5. Funktsioonide liigitus (paaris- ja paaritud funktsioonid, perioodilised funktsioonid, monotoonsed funktsioonid, tõkestatud funktsioonid). Tuua näiteid. .............................................. 7 6. Elementaarsed põhifunktsioonid, nende määramispiirkonnad, põhiomadused ja graafikud. .....7 7. Liitfunktsiooni mõiste, liitfunktsiooni määramispiirkond. Tuua näiteid. ....................................7 8. Pöördfunktsiooni mõiste; pöördfunktsiooni määramis- ja muutumispiirkond. Tuua näiteid. .....7 9. Muutuva suuruse piirväärtus, tõkestamatult kasvav ja tõkestamatult kahanev suurus. ...............8 10. Funktsiooni piirväärtus. Funktsiooni vasak- ja parempoolne piirväärtus. .................................9 11. Tõkestamatult kasvav funktsioon, tõkestamatult vähenev funktsioon. ................................... 10 12

Matemaatika
118 allalaadimist
thumbnail
4
pdf

Matemaatiline analüüs II 1. kollokviumi spikker

Geomeetrilise rea osasumma ja summa valemite tuletamine. kui iga 𝒙𝟏 < 𝒙𝟐, kehtib mitterange võrratus 𝒇(𝒙𝟏 ) < 𝒇(𝒙𝟐). Näidata, ... päratus integraalis (𝒌 = 𝟐𝒋 ). Kui arvrea ∑∞ 𝒌=𝟏 𝒂𝒌

Matemaatiline analüüs 2
69 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun