Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Lineaaralgebra täielik konspekt (24)

5 VÄGA HEA
Punktid

Lõik failist

Vasakule Paremale
Lineaaralgebra täielik konspekt #1 Lineaaralgebra täielik konspekt #2 Lineaaralgebra täielik konspekt #3 Lineaaralgebra täielik konspekt #4 Lineaaralgebra täielik konspekt #5 Lineaaralgebra täielik konspekt #6 Lineaaralgebra täielik konspekt #7 Lineaaralgebra täielik konspekt #8 Lineaaralgebra täielik konspekt #9 Lineaaralgebra täielik konspekt #10 Lineaaralgebra täielik konspekt #11 Lineaaralgebra täielik konspekt #12 Lineaaralgebra täielik konspekt #13 Lineaaralgebra täielik konspekt #14 Lineaaralgebra täielik konspekt #15 Lineaaralgebra täielik konspekt #16 Lineaaralgebra täielik konspekt #17 Lineaaralgebra täielik konspekt #18 Lineaaralgebra täielik konspekt #19 Lineaaralgebra täielik konspekt #20 Lineaaralgebra täielik konspekt #21 Lineaaralgebra täielik konspekt #22 Lineaaralgebra täielik konspekt #23 Lineaaralgebra täielik konspekt #24 Lineaaralgebra täielik konspekt #25 Lineaaralgebra täielik konspekt #26 Lineaaralgebra täielik konspekt #27 Lineaaralgebra täielik konspekt #28 Lineaaralgebra täielik konspekt #29 Lineaaralgebra täielik konspekt #30 Lineaaralgebra täielik konspekt #31 Lineaaralgebra täielik konspekt #32 Lineaaralgebra täielik konspekt #33 Lineaaralgebra täielik konspekt #34 Lineaaralgebra täielik konspekt #35 Lineaaralgebra täielik konspekt #36 Lineaaralgebra täielik konspekt #37 Lineaaralgebra täielik konspekt #38 Lineaaralgebra täielik konspekt #39 Lineaaralgebra täielik konspekt #40 Lineaaralgebra täielik konspekt #41 Lineaaralgebra täielik konspekt #42 Lineaaralgebra täielik konspekt #43 Lineaaralgebra täielik konspekt #44 Lineaaralgebra täielik konspekt #45 Lineaaralgebra täielik konspekt #46 Lineaaralgebra täielik konspekt #47 Lineaaralgebra täielik konspekt #48
Punktid 50 punkti Autor soovib selle materjali allalaadimise eest saada 50 punkti.
Leheküljed ~ 48 lehte Lehekülgede arv dokumendis
Aeg2008-11-18 Kuupäev, millal dokument üles laeti
Allalaadimisi 858 laadimist Kokku alla laetud
Kommentaarid 24 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor climbatize Õppematerjali autor
maatriksid jne

Sarnased õppematerjalid

thumbnail
57
rtf

Maatriksid

1. MAATRIKSID 1.1. Üldmõisted Definitsioon 1. Maatriksiks nimetatakse riskülikujulist arvuliste elementidega tabelit, mis sisaldab n rida ja m veergu : Lühidalt maatriksit võib tähistada erinevate sulgudega (või kahekordsete püstjoontega): [ ] a = aij A = (aij ) = ij , (1.1) kus i = 1,...,n on rea number, j = 1,...,m on veeru number. Arve aij nimetatakse maatriksi elementideks. Nii et esimene alumine indeks näitab, mitmendas reas asub element , ja teine alumine indeks - mitmendas veerus asub element. Maatriksi suurust saab väljendada valemiga: ridade arv x veergude arv. Antud maatriks (1.1) on suurusega n x m ja seda saab kirjutada järgmiselt : An x m või dim A = n x m (dimensioon ­ suurus). 3 -

Matemaatika
thumbnail
28
docx

MAATRIKSALGEBRA

MAATRIKSALGEBRA 1. Maatriksi mõiste ja liigitus Maatriksiks nimetatakse ristkülikukujulist elementide tabelit, mis koosneb m reast ja n veerust. Maatriksi elemente tähistatakse a ik, kus i näitab, millises reas ja k, millises veerus element asub. Maatrikseid tähistatakse suurte tähtedega A, B, C, . . . Maatriksi üldkuju on: a11 a12 ... a1n a 21 a 22 ... a 2 n . . . . a am2 ... a mn A= m1 . Lühemalt on võimalik maatriksit esitada kujul: A = ( aik ) mn. Maatriksi erikujud: 1. Kui m = n, siis nimetatakse maatriksit ruutmaatriksiks. Ruutmaatriksi võrdsete indeksitega elemendid aii moodustavad peadiagonaali

Matemaatika
thumbnail
104
pdf

Konspekt

sid. Siis (A + B)(A - B) = A2 - B 2 - [A, B] T~ oestus. T~oepoolest (A + B)(A - B) = A(A - B) + B(A - B) = AA - AB + BA - BB = A2 - B 2 - [A, B] Seega (A + B)(A - B) = A2 - B 2 [A, B] = 0 mis u ¨tleb, et ruutude vahe valemit v~oib kasutada siis ja ainult siis, kui maatriksid A ja B kommuteeruvad. 3.7 Maatrikskorrutise omadusi: Poissoni-Lie algebra Teoreem 9. Maatriksid A, B, C olgu u ¨hesuguse j¨ arguga ruutmaat- riksid ning R. Siis 1) [A, B] = -[B, A] (antis¨ ummeetria) II. Maatriksarvutus 11 2) [A ± B, C] = [A, C] ± [B, C] (aditiivsus) 3) [A, B] = [A, B] = [A, B] (homogeensus)

Lineaaralgebra
thumbnail
23
doc

Maatriksi algebra

MAATRIKSALGEBRA 1. Maatriksi mõiste ja liigitus Maatriksiks nimetatakse ristkülikukujulist elementide tabelit, mis koosneb m reast ja n veerust. Maatriksi elemente tähistatakse a ik, kus i näitab, millises reas ja k, millises veerus element asub. Maatrikseid tähistatakse suurte tähtedega A, B, C, . . . Maatriksi üldkuju on: a11 a12 ... a1n a 21 a 22 ... a 2 n A= . . . . . a am2 ... a mn m1 Lühemalt on võimalik maatriksit esitada kujul: A = ( aik ) mn. Maatriksi erikujud: 1. Kui m = n, siis nimetatakse maatriksit ruutmaatriksiks. Ruutmaatriksi võrdsete indeksitega elem

Kõrgem matemaatika
thumbnail
18
pdf

Lineaarsed võrrandi süsteemid

Lineaarsed võrrandisüsteemid Lineaarne võrrand Definitsioon Lineaarse võrrandi all mõistetakse võrrandit kujul a1 x1 + a2 x2 + ... + an xn = b, (1) kus a1 , ... , an ja b on fikseeritud (antud) arvud ning x1 , ... , xn on tundmatud. http://www.hot.ee/habib/MindReader.htm Arvu b nimetatakse vaadeldava võrrandi vabaliikmeks, arve a1 , ... , an aga tema kordajateks. Näide Võrrandis 5 x + 3 y - 2 z = -4 on vabaliikmeks arv ­4, kordajateks arvud 5, 3 ja ­2 ning tundmatud on tähistatud tähtedega x, y ja z. Lineaarse võrrandi lahend Definitsioon Lineaarse võrrandi (1) lahendiks nimetatakse sellist tundmatute x1 , ... , xn väärtuste komplekti c1 , ... , cn , R, mis asendamisel võrrandi (1) vasakusse poolde muudavad selle samasuseks: a1 c1 + a2 c2 + ... + an cn b. Näide Võrrandi 5 x + 3 y - 2 z = -4 üheks lahendiks on x = 1, y = -1 ja z = 3, kuna antud tun

Matemaatika
thumbnail
81
pdf

Kõrgem matemaatika / lineaaralgebra

Kõrgema matemaatika kordamisküsimused 1. Maatriksi definitsioon. Maatriksi elemendid. Lineaarsed tehted maatriksitega (liitmine ja skalaariga korrutamine). Nullmaatriks. Transponeeritud maatriks 2. Maatriksite korrutise definitsioon. Korrutamise omadused ja seosed lineaarsete tehete ning korrutamise vahel. Ühikmaatriks. 3. Teist ja kolmandat järku determinandid. 4. Permutatsiooni definitsioon. Inversiooni definitsioon. n-järku determinandi definitsioon. Determinandi põhiomadused 5. Maatriksi elemendi minor. Alamdeterminant. Determinandi arendus rea ja veeru järgi. Determinantide teooria põhivalem. 6. Regulaarse maatriksi mõiste. Pöördmaatriksi definitsioon ja elementide leidmise eeskiri. Pöördmaatriksi omadused. 7. Lineaarse võrrandisüsteemi definitsioon. Võrrandisüsteemi kordajad, vabaliikmed, lahend. Vasturääkiv, kooskõlaline, määratu süsteem. Süsteemi maatriks ja laiendatud maatriks. 8. Süsteemi lahen

Algebra I
thumbnail
78
pdf

Majandusmatemaatika

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Mudeli mõiste. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Matemaatiliste mudelite liigitus ja elemendid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Matemaatilise mudeli struktuur ja sisu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2. FUNKTSIOONID JA NENDE ALGEBRA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Arvud ja nende hulgad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Funktsionaalne sõltuvus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Astendamine. Polünoomid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Raamatupidamise alused
thumbnail
28
pdf

Kõrgema matemaatika üldkursus

TE.0568 Kõrgema matemaatika põhikursus (4 EAP) 2011/2012 sügis 1. Determinandid: omadused, miinorid, alamdeterminandid. Crameri meetod lineaarvõrrandisüsteemi lahendamiseks. Determinant on lineaaralgebras funktsioon, mis seab igale ruutmaatriksile vastavusse skalaari, ning on üks olulisemaid matemaatilisi konstruktsioone lineaarvõrrandsüsteemi uurimisel. Determinandiks nimetatakse ruutmaatriksiga seotud arvu, mis on arvutatud teatud eeskirja kohaselt. Determinante tähistatakse DA Maatriksi A determinanti tähistatakse tavaliselt , või . Determinant on defineeritud vaid ruutmaatriksile. Determinandi põhiomadused 1. Maatriksi determinandi väärtus ei muutu maatriksi transponeerimisel: det(A) = det(AT). 2. Determinant on null, kui determinandi 1 rida või veerg : 1. koosneb nullidest 2. on võrdne mõne teise vastava rea või veeruga

Kõrgem matemaatika




Meedia

Kommentaarid (24)

Martiinan profiilipilt
Martiinan: Väga hea, kahe nädala pärast tuleb eksam ja see materjal on abiks. Aitäh. :)
15:37 27-12-2008
producent profiilipilt
Sven Allik: põhjalik muidu, aga harjutusi ül võib ka õpikust teha neid on liiga palju
21:49 06-01-2010
Sten443 profiilipilt
Sten443: Nelja päeva pärast eksam, aitas palju, suured tänud!
00:17 26-10-2010



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun