Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Lineaaralgebra - 3. KT teooria (3)

4 HEA
Punktid
Lineaaralgebra --3-KT teooria #1 Lineaaralgebra --3-KT teooria #2
Punktid 50 punkti Autor soovib selle materjali allalaadimise eest saada 50 punkti.
Leheküljed ~ 2 lehte Lehekülgede arv dokumendis
Aeg2013-01-17 Kuupäev, millal dokument üles laeti
Allalaadimisi 405 laadimist Kokku alla laetud
Kommentaarid 3 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor laurl Õppematerjali autor
Lineaarkujutis, Lineaarteisendus, Vektorarvutus, Lineaarkujutise vektorruum, lineaarteisenduse omavektor, afiinne ruum, dimensioon, eukleidiline ruum, vektorkorrutise omadused, vektori segakorrutis.Hea lühike konspekt viimase KT teooriast. Õppejõud: Varik

Sarnased õppematerjalid

thumbnail
3
docx

Lineaarkujutus ja teisendus 3. KT

Lineaarkujutus ja teisendus. Olgu hulgad V, W vektorruumid. Aksioom1 Kahe vektorruumi V ja W korral määratud kujutust f: V W nimetatakse lineaarkujutuseks, kui on täidetud tingimus : f ( a + b) = f (a) + f (b). Järeldus1 Olgu = = 1 f ( a + b) = f ( a ) + f ( b ) lineaarkujutuse distributiivsus vektorite liitmise suhtes. Järeldus2 = 0 f ( a ) = f (a ) lineaarkujutuse kommutatiivsus skalaariga korrutamise suhtes. Järeldus3 = = 0 f ( 0 ) = 0 Aksioom2 Vektorruumi V korral määratud lineaarset kujutust f : V V nimetatakse selle vektorruumi V lineaarteisenduseks vektorruumist V iseendasse tagasi. Lineaarkujutuste f ja g korral lepitakse kokku rääkida ka nende summast f + g ja kujutuste korrutamisest reaalarvuga f. Lineaarkujutiste liitmisel ja korrutamisel arvuga lepitakse kokku järgmises:

Matemaatiline analüüs
thumbnail
1
docx

Lineaari eksami materjal

Determinandid Kompleksarvud Lineaarkujutus ja ­teisendus Ruutvormid Def.1-eeskirja £, mis seab hulga V igale elemendile x Kui hulgas on määratud mingisugune tehe ja selle hulga mistahes kahe Kahe vektorruumi V ja W korral määratud kujutust nimetatakse F= ruutvorm, lineaarvorm: vastavusse hulga W teatava elemendi y, nimetatakse kujutuseks elemendiga sooritatud tehte tulemus osutub alati selle sama hulga lineaarkujutuseks, kui on täidetud tingimus £(*+)=*£() Ruutvormi kordajatest saab moodustada nxn järku hulgast V hulka W. elemendiks, siis öeldakse, et hulk on vaadeldava tehte suhtes +*£() sümmeetrilise maatriksi. At=A. Ruutvormi maatrikskuju: Def.2-kui m

Lineaaralgebra
thumbnail
1
doc

3 KT teooria spikker

Olgu hulgad V ja W vektorruumid siis 2 vektorruumi korral määratud kujutust f:VW nimetatakse lineaarkujutuseks kui ta rahuldab tingimust f(·a+·b)= ·f(a) + ·f(b) J: = =1 f(a+b)=f(a)+f(b) J2: =0 f(·a)= ·f(a) J3: = =0 f(0)=0. Vektorruumi V korral määratud lineaarkujutlust f:VV nim selle vektorruumi V lineaarteisenduseks (ehk kujutusest vektorruumist V iseendasse tagasi. 1º leidub või eksisteerib vähemalt üks punkt. 2º igale kahele kindlas järjekorras võetud punktide paarile (A;B) on vastavusse seatud parajasti üks vektor AB. 3º iga punkti A ja iga vektori a korral eksisteerib parajasti üks B nii et punktidele A ja B vastab vektor a. 4º rööpküliku aksioom, kui vektor AB on võrdne vektoriga CD siis AC on võrdne BD'ga. J1: AC=BD a+b=b+a. J2: AD=BD+AB a+(b+c)=(a+b)+c. J3: BB=0 a=a+0. J4: BA=(-a) a+(-a)=0 1* igale paarile (,a) on vastavusse seatud parajasti üks vektor a. 2* (+)a= a+ a. 3* (a)=( )a. 4* (a+b)= a+ b. 5* 1 ·a=a. J5: =a(a)= · a. (-a)=-1 ·a. J6: ·

Lineaaralgebra
thumbnail
25
doc

Algebra ja geomeetria kordamine

MAATRIKS: Maatriks ­ nimetatakse ümarsulgudesse paigutatud reaalarvude tabelit, milles on eristatavad read ja veerud. Maatriksi mõõtmed ­ Maatriksit, milles on m rida ja n veergu nimetatakse täpsemalt (m,n)- maatriksiks ning arvupaari (m,n) selle maatriksi mõõtmeteks. Maatriksi järk ­ Omadus, mis esineb ainult ruutmaatriksil: Näiteks Mat(n,n) nim. n-järku maatriksiks. Maatriksi elemendid ­nimetatakse reaalarve, milledest maatriks koosneb. Maatriksi ja maatriksite hulga tähistused ­ Maatrikseid tähistatakse tavaliselt suurte ladina tähtedega: A, B,....X, Y, Z. Maatriksite elemente tähistatakse vastavate väikeste ladina tähtedega, mis võivad olla varustatud ka indeksitega: a, b, c, jne. Kõigi (kõikvõimalike mõõtmetega) maatriksite hulka tähistame edaspidi Mat abil ning kõigi (m, n)-maatriksite hulka tähistame edaspidi Mat(m, n) abil. Ruutmaatriks ­maatriks, mille ridade arv on võrdne veergude arvuga, s.t. m=n Ristkülikmaatriks ­maatriks, mille ridade arv

Algebra ja geomeetria
thumbnail
5
docx

Lineaaralgebra Eksami küsimuste vastused

1. Kompleks arvude põhimõiste,põhilised definatsioonid. K.arvude liitmine,korrutamine,jagamine algebralisel kujul. DEF. k.arvuks nim. Arvufoori (a,b) kus a,bR. esitatakse z=a+bi (a-reaalosa,b- imaginaar osa,i- imaginaar ühik). Põhimõiste olgu z1=a1+b1i,z2=a2+b2i z1=z2 kui a1= a2 ja b1=b2, z=0 kui a=0 ja b=0,k-arvu z1=a1-b1i nim.kaas k-arvuks z1=a1+b1i. Arvutamine z1+z2= (a1+a2)+(b1+b2)i, z1-z2= (a1-a2)+(b1-b2), z1*z2= (a1+b1i)*(a2+b2), 2. K.geomeetriline kujutamine, trigonomeetriline kuju.korrutamine ja jagamine trigonomeetrilisel kujul. geomeetriline kujutamine k-arv/reaalarvu paar (a,b).saab k-arvu z=a+bi kujutada xy tasandil kus kordinaadid a-reaal osa, b- imaginaar osa ja vastavalt X-telg k-arvu reaal telg ja Y-telg ­ imaginaar telg.XY tasandi iga punkt M(x,y) ongi z=x+iy trigonomeetriline kuju tähistame nurk X-teljel ja vektori pikkus r ,siis a=rcos ja b=rcos.avaldist z=r(cos+isin) ongi trigonomeetriline kuju. Arvutamine z1*z2=

Lineaaralgebra
thumbnail
24
rtf

Lineaaralgebra eksam

Determinandi D mis tahes reanumbri i korral kehtib D = (1<=j<=n)aijAij = ai1Ai1 + ai2Ai2 + ... + ainAin (arendis i-nda rea järgi) ja mis tahes veerunumbri j korral kehtib D = (1<=i<=n)aijAij = a1jA1j + a2jA2j + ... + anjAnj (arendis j-nda veeru järgi), kus Aij = (-1)i+j Mij ja Mij on determinant, mis tekib determinandist i-nda rea ja j-nda veeru kõrvaldamisel 8. Kui determinandi mingis reas või veerus on kõik arvud nullid, siis determinandi väärtus võrdub nulliga 9. Determinantide teooria põhivalemid. Ruutmaatriksi A = ||a ij|| Rnxn determinandi |A| = D mis tahes reanumbrite i ja k korral kehtib võrdus a i1Ak1 + ai2Ak2 + ... + ainAkn = iAk = (1<=j<=n)aijAkj = D, kui i=k ja 0, kui ik, kus Akj on determinandi D elemendi akj alamdeterminant. Analoogiliselt mis tahes veerunumbrite j ja k korral a1jA1k + a2iA2k + ... + aniAnk = jBk = (1<=j<=n)aijAik = D, kui j=k ja 0, kui jk 10. kui A ja B on ühte ja sama järku ruutmaatriksid, siis nende maatriksite

Lineaaralgebra
thumbnail
26
docx

Lineaaralgebra eksami kordamisküsimused vastused

AT 49.Maatriksi elemendi täiendusmiinor- tähis Mij . Kui maatriksist ära jätta i-s rida ja j-s veerd, siis saadud (n-1)-järku ruutmaatriksi determinanti nimetatakse elemendi aij täiendusmiinoriks. 50.maatriksi elemendi algebraline täiend- Arvu (−1)i+ j M ij nimetatake elemendi aij algebralieks täiendiks 51.Determinandi arendus rea või veeru järgi- determinantide teooria põhivalem väidab, et maatriksi A determinant on võrdne summaga n +a ¿ A ¿ =∑ aik A ik | A|=ai 1 A i 1+ ai 2 Ai 2 +⋯ k=1 Analoogiline valem kehtib, kui maatrikis A fikeerime j-nda veeru ja arvutame selle veeru elementide algebralied täiendid siis n

Matemaatiline analüüs 1
thumbnail
9
doc

Lineaaralgebra

Lineaaralgebra I kontrolltöö teooriaküsimused 1. Kompleksarvu mõiste, imaginaarühik, kaaskompleksarv, kompleksarvude võrdsus ja nulliga võrdumise tingimus. Kompleksarvu moodul, argument ja trigonomeetriline kuju. Kompleksarvuks z nimetatakse avaldist z = a + bi , (1) kus a ja b on reaalarvud ja i on niinimetatud imaginaarühik, mis on määratud võrdustega i = -1 või i 2 = -1 ; Kaht kompleksarvu z = a + bi ja z = a - bi , mis erinevad ainult imaginaarosa märgi poolest, nimetatakse kaaskompleksarvudeks. Kokkuleppe põhjal 1) kaht kompleksarvu z1 = a1 + b1i ja z2 = a2 + b2i loetakse võrdseteks ( z1 = z2 ) , kui a1 = a2 ja b1 = b2 , s.t. kui nende reaalosad on võrdsed ja imaginaarosad on võrdsed; 2) kompleksarv võrdub nulliga, s.o.

Lineaaralgebra




Kommentaarid (3)

Mr.SmartFiles profiilipilt
Smart Files: Väga hea materjal. Tõesti midagi kasulikku üle pika aja.
11:55 07-01-2016
suduk profiilipilt
suduk: Väga mõnus materjal õppimiseks!
18:51 17-01-2013
RK1.0 profiilipilt
RK1.0: Abiks ikka
21:27 17-01-2013



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun