Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

LEONTIEFI MUDEL (0)

3 HALB
Punktid
Vasakule Paremale
LEONTIEFI MUDEL #1 LEONTIEFI MUDEL #2 LEONTIEFI MUDEL #3 LEONTIEFI MUDEL #4 LEONTIEFI MUDEL #5 LEONTIEFI MUDEL #6 LEONTIEFI MUDEL #7
Punktid 50 punkti Autor soovib selle materjali allalaadimise eest saada 50 punkti.
Leheküljed ~ 7 lehte Lehekülgede arv dokumendis
Aeg2009-12-17 Kuupäev, millal dokument üles laeti
Allalaadimisi 103 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor liis59 Õppematerjali autor
Majandusmatemaatika

Sarnased õppematerjalid

thumbnail
23
doc

Maatriksi algebra

x + 3x + 5 x + 7 x = 12 x + 2x - x = 2 1 2 3 4 2 3 4 3. . 4. . 3x1 + 5 x 2 + 7 x3 + x 4 = 0 x1 - x 2 - x 4 = -1 5 x1 + 7 x 2 + x3 + 3x 4 = 4 - x1 + 3 x 2 - 2 x3 = 0 Majandusmatemaatilised mudelid. Majanduses toimuvate protsesside kirjeldamiseks, samuti majanduslikele probleemidele vastuste leidmiseks, on vaja luua mudel. Mudel peab võimalikult täpselt kirjeldama reaalselt toimuvat protsessi, olles samaaegselt võimalikult lihtne ja ülevaatlik, et tema põhjal oleks võimalik teha järeldusi. Kogu majanduses toimuvat ei ole võimalik ühe mudeliga kirjeldada, seepärast valitakse välja hetkel olulisemad seosed ja omadused, mis on konkreetse mudeli seisukohalt kõige olulisemad. Mudeli liigne lihtsustamine võib viia mittetöötava mudelini.

Kõrgem matemaatika
thumbnail
28
docx

MAATRIKSALGEBRA

1 2 3 4 2 3 4 3 x1 + 5 x 2 + 7 x3 + x 4 = 0 x1 - x 2 - x 4 = -1 5 x + 7 x 2 + x3 + 3 x 4 = 4 - x + 3 x 2 - 2 x3 = 0 3. 1 . 4. 1 . Majandusmatemaatilised mudelid. Majanduses toimuvate protsesside kirjeldamiseks, samuti majanduslikele probleemidele vastuste leidmiseks, on vaja luua mudel. Mudel peab võimalikult täpselt kirjeldama reaalselt toimuvat protsessi, olles samaaegselt võimalikult lihtne ja ülevaatlik, et tema põhjal oleks võimalik teha järeldusi. Kogu majanduses toimuvat ei ole võimalik ühe mudeliga kirjeldada, seepärast valitakse välja hetkel olulisemad seosed ja omadused, mis on konkreetse mudeli seisukohalt kõige olulisemad. Mudeli liigne lihtsustamine võib viia mittetöötava mudelini.

Matemaatika
thumbnail
48
pdf

Maatriksid

¨ TARTU ULIKOOL MATEMAATIKA-INFORMAATIKA TEADUSKOND Puhta matemaatika instituut Aivo Parring ALGEBRA JA GEOMEETRIA Tartu 2005 SISSEJUHATUS K¨aesolevate m¨arkmete j¨arele tekkis vajadus 2000/01 ~oppeaastal, kui muudeti tollase matemaatikateaduskonna ~oppekavasid. Selle tulemusena l¨ ulitati ~oppekavasse algebra ja anal¨ uu¨tilise geomeetria sissejuhatavaid pea- t¨ukke k¨asitlev aine "Algebra ja geomeetria". Vahepeal on elu edasi l¨ainud. Matemaatikateaduskonnast on juba saanud matemaatika-informaatikatea- duskond. Nelja-aastasest bakalaureuse ~oppest on saamas kolmeaastane bakalaureuse ~ope. Uue ~oppekava kohaselt on selle ~oppeaine maht n¨ uu ¨d 40 tundi loenguid ja sama palju harjutusi. Iseseisvaks t¨o¨ oks on ette n¨ahtud 80 tundi. Semestri jooksul toimub 20 kahetunnilist loengu

Algebra ja geomeetria
thumbnail
24
rtf

Lineaaralgebra eksam

1. Kompleksarv kui reaalarvude paar. Tehted kompleksarvudega. Tehete omadused. Kompleksarvu algebraline kuju. Tuletatavad tehted ja nende omadused. Kompleksarvuks nimetatakse reaalarvude paari (x,y). C = {(x;y) | x, y R} Tehted kompleksarvudega: z1 = (x1; y1) C; z2 = (x2; y2) C 1. liitmine: z1 + z2 = (x1 + x2; y1 + y2) 2. korrutamine: z1 * z2 = (x1x2 - y1y2; x1y2 + x2y1) Kompleksarvudega tehete omadused 1. liitmine on kommutatiivne, st z1 + z2 = z2 + z1 z1, z2 C korral 2. liitmine on assotsiatiivne, st (z1 + z2) + z3 = z1 + (z2 + z3) z1, z2, z3 C korral 3. liitmise suhtes leidub nullelement (reaalarv 0, 0 + z = z + 0 = z z C korral), st leidub C, nii et z + = + z = z z korral; = (0; 0) = 0 4. igal kompleksarvul z = (x; y) = x + yi leidub (liitmise suhtes) vastandarv, st selline arv w C, et z + w = w + z = 0; w = -z 5. korrutamine on kommutatiivne, st z1z2 = z2z1 z1, z2 C korral 6. korrutamine on assotsiatiivne, st (z1z2)z3 = z1(z2z3) z1, z2, z3 C korral

Lineaaralgebra
thumbnail
96
pdf

ALGEBRA JA GEOMEETRIA

¨ TARTU ULIKOOL MATEMAATIKA-INFORMAATIKA TEADUSKOND Puhta matemaatika instituut Aivo Parring ALGEBRA JA GEOMEETRIA Tartu 2005 SISSEJUHATUS K¨aesolevate m¨arkmete j¨arele tekkis vajadus 2000/01 ˜oppeaastal, kui muudeti tollase matemaatikateaduskonna ˜oppekavasid. Selle tulemusena l¨ ulitati ˜oppekavasse algebra ja anal¨ uu¨tilise geomeetria sissejuhatavaid pea- t¨ukke k¨asitlev aine ”Algebra ja geomeetria”. Vahepeal on elu edasi l¨ainud. Matemaatikateaduskonnast on juba saanud matemaatika-informaatikatea- duskond. Nelja-aastasest bakalaureuse ˜oppest on saamas kolmeaastane bakalaureuse ˜ope. Uue ˜oppekava kohaselt on selle ˜oppeaine maht n¨ uu ¨d 40 tundi loenguid ja sama palju harjutusi. Iseseisvaks t¨o¨ oks on ette n¨ahtud 80 tundi. Semestri jooksul toimub 20 kahetunni

Algebra ja geomeetria
thumbnail
13
pdf

Majandusmatemaatika IIE eksami kordamisküsimused

Gaussi meetodiga saab leida ka pöördmaatriksit. Pöördmaatriks on olemas vaid regulaarsel maatriksil. Def: Ruutmaatriksit A nim regulaarseks kui selle determinant ei võrdu 0ga ja singulaarseks kui võrdub 0. Def: Regulaarse maatriksi A pöördmaatriks A-1 peab rahuldama võrrandit A*A-1=A-1*A=E, kus E on vastavat järku ühikmaatriks. Lahendskeem: (A!E)- >Gaussi teisend->(E!A-1). N: 248 -2 0 2 468 2. Leontjevi staatiline mudel 1 2 lõpptoodang y kogutoodang x 1 100=x11 160=x12 240 500 2 275 40 85 400 sisemine tarbimine Leontjevi mudel aitab leida samasugust tabelit järgmise aasta jaoks, kui uus lõpptoodang y=(200, 100) Otsekulude maatriks A, aij=xij/xj (1) 100/500 160/400 A= 275/500 40/400 Ax+y=x (2) ­ tasakaaluvõrrand sisemise tarbimise, lõpp- ja kogutoodangu vahel

Majandusmatemaatika
thumbnail
4
doc

Lineaar algebra teooria kokkuvõte

Lineaarvõrrandsüsteem-nim. Võrrandisüsteemi kujul {a11x1+..+a1nxn=b1 ; am1x1+.. +amnxn=bm. Arve aij nim lvs kordajateks, arvud b1..bm on vabaliikmed ja x1..xn on tundmatud. Süsteemi võrrandite arv m ja tundmatute arv n on sõltumatud. Sellist võrrandisüsteemi nimetatakse lineaarseks võrrandisüsteemiks, sest otsitavad suurused x1.. xn esinevad ainult lineaarsetes tehetes, st neid on vaid liidetud ja skalaariga korrutatud. Def. Arvude järjendit c1.. cn nim lvs lahendiks, kui tundmatute asendamisel nende arvudega (loomulikus järjekorras, st x1 = c1.. xn = cn) on süsteemi kõik võrrandid rahuldatud. Võrrsüsteemi nim kooskõlaliseks, kui tal leidub vähemalt 1 lahend. Kui lahendid puuduvad, nim sõsteemi vasturääkivaks. Võrrsüs kõigi lahendite hulka nim võrrsüs lahendihulgaks e üldlahendiks. Igal lvs-l kas lahend puudub, on ühene lahend või on lõpmata palju lahendeid. Cramer. Def. Öeldakse, et lvs-i korral on tegemist Crameri peajuhuga, kui 1)tundmatute arv võrd

Lineaaralgebra
thumbnail
19
doc

Õppematerjal

1 VEKTORALGEBRA PÕHIMÕISTEID DEFINITSIOON. Suurusi, mis on iseloomustatud oma 1) arvväärtuse (pikkuse), 2) sihi ja 3) suunaga, nimetatakse vektoriteks. Tähistame neid a, b,... . MÄRKUS. Geomeetriliselt on vektor a määratud kahe punktiga oma alguspunktiga A ja lõpp-punktiga B. Tähistame a = AB, kusjuures: 1) arvväärtuse määrab punktide vaheline kaugus, 2) sihi määrab punktidega antud sirge s(A,B), 3) suund on määratud punktide järjestusega. OLULISED VEKTORID: Vektoreid, mille arvväärtus (pikkus) on üks, nimetatakse ühikvektori- = 1. teks. Kasutatakse tähistust e, st e Vektoreid, mille arvväärtus (pikkus) on null, nimetatakse nullvektoriteks. Kasutatakse tähistust 0. Nullvektori siht ja suund on määramata. VEKTORITE VASTASTIKUSED SEOSED: Vektorid a ja b on võrdsed (a

Kõrgem matemaatika




Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun