Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

Hüdraulika Ülesanne 3 (variant 3) - sarnased materjalid

hüdro, rõhukadu, silinder, mahuti, hüdrostaatiline, tootlikkus, hüdrosilinder, 2bar, voolukiirus, ühikud, sobivaks, 4500, mahuni, reynoldsi, tõstma, mehaaniline, reast, kasutatava, 1bar, vabale, ülerõhk, mahutis, raskuskiirendus, lugedes, mahult, 40mm, minimaalselt, mahulised, diameeter, põhjapindala, 2300, ristlõigete, taavi, filatov
thumbnail
10
docx

Hüdraulika kodune töö varjant 14

Kodused ülesanded Varjant 14 Õppeaines: Hüdro- ja pneumoseadmed Transporditeaduskond Õpperühm AT-21a Kontrollis: Lektor Rein Soots Tallinn 2012 Ülesanne 2. (Varjant 14) Arvutada, milline on vedeliku poolt mahuti põhjale avaldatav hüdrostaatiline rõhk ( bar ), kui mahuti on täidetud vedelikuga, mille tihedus = 750 kg/m3 ja vedeliku vabale pinnale mõjuv väline ülerõhk p0 = 0,26 bar. Vedeliku taseme kõrgus mahutis on h = 15m. Valemid. p = hg p = hüdrostaatiline rõhk vaadeldavas vedeliku punktis [N/m2] h = vaadeldava punkti kaugus vedeliku pinnast vertikaalsuunas [m] = vedeliku tihedus [ kg/m3 ] g = raskuskiirendus 9,81[m/s2 ]

Hüdraulika ja pneumaatika
110 allalaadimist
thumbnail
10
docx

Hüdraulika kodutöö varjant 12

Kodused ülesanded Varjant 12 Õppeaines: Hüdro- ja pneumoseadmed Transporditeaduskond Õpperühm AT-21a Kontrollis: Lektor Rein Soots Tallinn 2012 Ülesanne 2. (Varjant 12) Arvutada, milline on vedeliku poolt mahuti põhjale avaldatav hüdrostaatiline rõhk ( bar ), kui mahuti on täidetud vedelikuga, mille tihedus = 700 kg/m3 ja vedeliku vabale pinnale mõjuv väline ülerõhk p0 = 0,05 bar. Vedeliku taseme kõrgus mahutis on h = 4,5m. Valemid. p = hg p = hüdrostaatiline rõhk vaadeldavas vedeliku punktis [N/m2] h = vaadeldava punkti kaugus vedeliku pinnast vertikaalsuunas [m] = vedeliku tihedus [ kg/m3 ] g = raskuskiirendus 9,81[m/s2 ]

Hüdraulika ja pneumaatika
72 allalaadimist
thumbnail
24
docx

Hüdraulika ja pneumaatika kodused ülesanded

silindri mehaaniline kasutegur m? Valida silindrite standardsete läbimõõtude reast lähim sobiva läbimõõduga silinder. Milline peaks olema valitud silindri käitamiseks kasutatava töövedeliku rõhk, bar? Hüdrosilindrite normaalläbimõõtude (mm) rida: 12, 16, 20, 25, 32, 40, 50,63, 80, 100, 125, 160, 200, 220, 250, 280, 320, 360, 400. Antud: m = 400 kg = 0,95 pmax=200bar Leida: d=? pkäit=? Teisendan ühikud valemi jaoks sobivaks. 1kg=10N 400kg= 400*10=4000N 1bar=105Pa 200bar=200*105Pa=200*105N/m2 Kasutan hüdrostaatilise rõhu põhivalemit: P ­pinnale mõjuv vedeliku rõhk, N/m2; F ­mõjuv välisjõud, N; A ­jõudu ülekandva pinna pindala, m2. Teisendan voolu ristlõike pindala sobivatese ühikutese ja arvutan hüdrosilindri minimaalse läbimõõdu: S ­vooluristlõike pindala r ­hüdrosilindri raadius d ­hüdrosilindri läbimõõt

Hüdraulika ja pneumaatika
283 allalaadimist
thumbnail
15
pdf

Hüdraulika ja Pneumaatika

............. 111 Ülesanne 11 ........................................................................................................................ 113 Ülesanne 12 ........................................................................................................................ 115 2 Ülesanne 2. Variant 4 Arvutada, milline on vedeliku poolt mahuti põhjale avaldatav hüdrostaatiline rõhk ( bar ), kui mahuti on täidetud vedelikuga, mille tihedus = 550 kg/m3 ja vedeliku vabale pinnale mõjuv väline ülerõhk p0 = 0,015 bar. Vedeliku taseme kõrgus mahutis on h = 7 m. Valemid. p = hg p = hüdrostaatiline rõhk vaadeldavas vedeliku punktis N [ m]2 h = vaadeldava punkti kaugus vedeliku pinnast vertikaalsuunas [m] = vedeliku tihedus [ kg/m3 ] g = raskuskiirendus , 9,81 m [ s] 2

Hüdraulika
233 allalaadimist
thumbnail
11
doc

Hüdraulika - Koduse tööde lahendus

Standartite järgi valin toru, mille siseläbimõõt on 24 mm ja seina paksus on 2mm. Lubatud maksimaalne rõhk on antud torus on 333 bar-i. Ülesanne 5 Antud: Hüdrosilindri siseläbimõõt: d =200mm = 0,2m Koormuse nihutamise kiirus: v =600mm/min = 0,01 m/s Süsteemi mahulised kaod pumba tootlikkusest:q= 2% Leida: silindrit toitva pumba minimaalselt vajalik tootlikkus q l/min - ? Lahendus: Arvestades et hüdrosilindri siseläbimõõt on võrdne kolvi pindalaga, leiame hüdrosilindri kolvi pindala A: A=*r2 r ­ hüdrosilindri kolvi raadius m r =0,5*d r =0,5*0,2 =0,1 m A =3,1416*0,12 =0,0314m2 Et leida silindrit toitva pumba minimaalselt vajalik tootlikkus q l/min, kasutame valemit mahulist vooluhulka. qv =v*A m3/s

Hüdraulika ja pneumaatika
166 allalaadimist
thumbnail
6
doc

Hüdraulika kodu ül.

TALLINNA TEHNIKAKÕRGKOOL TALLINN COLLEGE OF ENGINEERING KODUSED ÜLESANDED AINES HÜDRAULIKA, PNEUMAATIKA Variant: NR. 9 Mehaanikateaduskond Üliõpilane: Õpperühm: Õppejõud: Tallinn Ülesanne 2 Arvutage, milline on vedeliku poolt mahuti põhjale avaldatav hüdrostaatiline rõhk, kui mahuti on täidetud vedelikuga, mille tihedus on = 850kg/m3 ja vedeliku vabale pinnale mõjub väline ülerõhk p0 = 1,2 bar. Vedeliku taseme kõrgus mahutis on 14 m. Antud: = 650kg/m3 p0 = 0,028 bar = 2800Pa h = 2,5m g = 9,8 p=? p = hg + p0 p = 650 2,5 9,8 + 2800 = 18725 N/m 2 = 0,19bar Vastus: Vedeliku poolt mahuti põhjale avaldatav hüdrostaatiline rõhk on 0,19 bar. Ülesanne 4

Hüdraulika
150 allalaadimist
thumbnail
24
docx

Iseseisvad tööd: HÜDRAULIKA JA PNEUMAATIKA

ISESEISVAD TÖÖD Õppeaines: HÜDRAULIKA JA PNEUMAATIKA SISUKORD SISUKORD....................................................................................................................... 1 1.ISESEISEV TÖÖ NR.1.................................................................................................... 3 1.1Ülesanne................................................................................................................ 3 1.2Lähteandmed......................................................................................................... 3 1.3Lahendus................................................................................................................ 3 1.4Vastus..................................................................................................................... 4 2.ISESEISEV TÖÖ NR. 2............................................................

Hüdraulika ja pneumaatika
77 allalaadimist
thumbnail
6
doc

Hüdraulika ja pneumaatika koduse töö lahendatud ülesanded

järgmisena 32mm läbimõõduga silinder, mille puhul 1000kg raskuse tõstmiseks peab olema F 10000 10000 rõhk vähemalt p min  A    0,000804  0,85  0,0006834  14,63MPa  146,3bar Ülesanne 5 Hüdrosilinder, mille siseläbimõõt on 125mm, nihutab koormust kiirusega 1200 mm/min. Arvutada silindrit toitva pumba minimaalselt vajalik tootlikkus q l/min. On teada, et süsteemi mahulised kaod moodustavad pumba tootlikkusest q 4%. Vastus Vajatav pumba tootlikkus on võrdne 1 minuti jooksul täidetava silindri maht, millel on sama diameeter käigupikkusega 1,2 meetrit. Seega kui on teada et silindri põhjapindala on A  12264.624mm 2  0,0123m 2 ning kõrgus 1,2m, siis silindri ruumala on V  A  h , seega V  0,0123  1

Hüdraulika ja pneumaatika
335 allalaadimist
thumbnail
5
doc

Hüdraulika, Pneumaatika Arvestustöö Nr. 1 vastused

Hüdraulika, Pneumaatika Arvestustöö Nr. 1 1. Hüdroajami mõiste ja põhilised komponendid. Hüdroajamis toimub energia ülekandmine vedeliku abil ja ajami lõpplülis vedeliku hüdraulilise energia muutmine mehaaniliseks energiaks, mida kasutatakse seadmes kasuliku töö tegemiseks. Hüdroajami põhikomponendid: - paak töövedeliku tarvis, - pump koos pumba ajamiga, - süsteemi kaitseseadmed, mis väldivad ülekoormuse ja süsteemi iseenesliku tühjenemise pumba mootori seiskumisel (kaitseklapp, vastuklapp), - reguleerimisseadmed kolvi liikumiskiiruse ja süsteemis toimiva rõhu reguleerimiseks ( drossel, rõhu regulaator ), - juhtimisseadmed silindri juhtimiseks (jaotur) - hüdrosilinder mehaanilise energia saamiseks, - süsteemi abiseadmed ( filter, torustik ). 2/3. Hüdroajami mehaanilise ja mahulise kasuteguri mõiste. Mehaaniline kasutegur mõjutab pumbalt saadavat rõhku ja sellega seadmelt saadava jõu suurust. Mahuline kasutegur mõjutab pumba vooluhulka ja selle kaudu h�

Hüdraulika ja pneumaatika
326 allalaadimist
thumbnail
14
docx

Hüdro- ja pneumoseadmed kodune töö

Isesesvad tööd Õppeaines: HÜDRO – JA PNEUMOSEADMED Transporditeaduskond Õpperühm: AT-21a Juhendaja: lektor Samo Saarts Esitamiskuupäev:……………. Üliõpilase allkiri:…………….. Õppejõu allkiri: ……………… Tallinn 2014 1. Ülesanne – hüdrostaatika Variant 4 Antud: Vedeliku samba kõrgus A=25 m Välisrõhk P1=3 bar Vedeliku tihedus = 950 kg/m3  Põhja pindala Sp=2m2 Leian vedeliku rõhu pvedelik=h**g=A**g pvedelik=25*950*9,81=232987,5 [Pa]=0,232 [MPa]=2,32 [bar] Leian rõhu anumas P= pvedelik+P1 P=2,32+3=5,32 [bar] = 532000 [Pa] Arvutan jõu anuma põhjas F=P*Sp F=532000*2=1064000 [N]=1063 [kN] Vastus: Põhjale mõjuv rõhk P=5,32[bar]. Anuale mõjuv jõud põhjas F=1063 [kN] 2. Ülesanne – silindri dimensioneerimine Antud: Kolviläbimõõt D2=10 mm Vedeliku voolukiirus v=1,2 m/s Ma

Hüdraulika ja pneumaatika
50 allalaadimist
thumbnail
4
doc

Hüdro- ja pneumoseadmed

TALLINNA TEHNIKAKÕRGKOOL TALLINN COLLEGE OF ENGINEERING Hüdro- ja pneumoseadmed Iseseisva töö ülesanded Õppeaines: HÜDRAULIKA JA PNEUMAATIKA Transporidteaduskond Õpperühm: TLI-31 Üliõpilane: Indrek Kaar Juhendaja: Rein Soots Tallinn 2008 Ülesanne 1. Avaldage rõhk 250 mHg paskalites, baarides ja megapaskalites, kui elavhõbeda tihedus on 13600kg/m³. Anuma põhjale mõjub vedeliku kaalust tingituna surve, mis on sõltuv vedeliku samba kõrgusest h anumas ja vedeliku tihedus Antud: p= 250 mmHg = 13600 kg/m3 1 mmHg = 133,322 Pa 1 bar =105 Pa 250mmHg · 133,322 = 33330,5 Pa 33330,5 : 105 = ,0333 bar 0,333 : 10 = 0,033 MPa Leida: p = Pa-s, bar, MPa Vastus: Rõhk paskalites 33330,5 Pa, baarides ,0,333 bar ja megapaskalites 0,033 MPa. Ülesanne 2. Vertikaalselt paiknev hüdrosi

Hüdraulika ja pneumaatika
83 allalaadimist
thumbnail
19
pdf

Hüdraulika teoreetilised alused ja Füüsikalised suurused

Tallinna Tööstushariduskeskus Hüdraulika teoreetilised alused 2 Hüdraulika teoreetilised alused Raskusjõud = mass × raskuskiirendus 2.1 Füüsikalised suurused F = 1 kg × 9,81 m/s2 =9,81 N Jõu mõõtühikuks SI-süsteemis on Mass m njuuton. Inertsi ja gravitatsiooni iseloomustaja Rõhk p ning mõõt. Keha mass on SI-süsteemi põhiühik. Massi mõõtühikuks SI- Suurus, mis iseloomustab keha pinna süsteemis on kilogramm. mingile osale risti mõjuvaid jõude. Rõhk on vedelikke sisaldavate protsesside Jõud F kirjeldamisel üks tähtsaim parameeter. Pinnaga A risti mõjuv jõud F tekitab Kehade vastastikuse mehaanilise mõju rõhu p:

hüdroõpetus
63 allalaadimist
thumbnail
53
doc

LAEVA ABIMEHHANISMID

propellerpumbad . 2. Staatilise rõhu ehk mahttoimega pumbad: Pumba tööorgan surudes vedeliku peale suurendab vahetult vedeliku staatilist rõhku Mahtpumpade rühma kuuluvad : - edasi-tagasi liikuva tööorganiga kolb-, tiib-, membraan - ja vibropumbad; - pöörleva tööorganiga rootorpumbad hammasratas-, kruvi-, siiber- jt. pumbad . Pumpade tööparameetrid. Pümba tööd iseloomustavad järgmised parameetrid: 1. Tootlikkus ( jõudlus ,vooluhulk ) 2. Imemiskõrgus (m), 3. Tõstekõrgus ( surve ) H (m veesammast ), 4. Tarbitav võimsus P (kW), 5. Kasutegur ( absoluutarv või % ), 6. Kavitatsioonivaru h (m) - ingliskeelses kirjanduses NPSH - net positive suction head või maksimaalne lubatav vaakum H lub/vac(m), 7. Tööorgani liikumissagedus n ( pöörlemis - või käigusagedus p / min käiku/minutis ). 1. Pumba tootlikkus näitab ajaühikus tehtud kasulikku tööd. Eristatakse :

Abimehanismid
65 allalaadimist
thumbnail
18
docx

Hüdromehaanika eksam

1) Mis on füüsikalise suuruse nagu Jõud mõõtühik, ning kuidas esitada see suurus hüdromehaanika põhiühikute kaudu? (hüdromehaanika põhiühikud on: pikkuse, massi, aja ja temperatuuri mõõtühikud)! Jõu mõõtühik SI süsteemis on Njuuton (N). Jõud 1N annab kehale, mille mass on 1kg, kiirenduse 1m/s 2 1N= 1kg*m/s2 2) Mis on füüsikalise suuruse nagu Rõhk mõõtühik, ning kuidas esitada see suurus hüdromehaanika põhiühikute kaudu? Rõhu põhiühik SI süsteemis on Pascal. 1 paskal (Pa) = 1 N/m2 = 1 J/m3 = 1 kg·m–1·s–2 3) Mis on füüsikalise suuruse nagu Energia mõõtühik, ning kuidas esitada see suurus hüdromehaanika põhiühikute kaudu? Energia mõõtühik on Joule(džaul) J. 1J on energia hulk, mis kulub keha liigutamiseks ühe meetri võrra, rakendades sellele jõudu 1 njuuton (N) 1J=1N*m=1kg*m2/s2 4) Mis on füüsikalise suuruse nagu Võimsus mõõtühik, ning kuidas esitada see suurus hüdromehaanika põhiühikute kaudu? Võimsuse mõõtühik on

Hüdromehaanika
128 allalaadimist
thumbnail
23
pdf

Keemiatehnika alused

Energiabilanssi üldine kuju on massibilanssi omale analoogne: E(sisse) + E(genereeritud) - E (välja) - E (tarbitud) = E (akumuleeritud), (2.6). Statsionaarse süsteemi jaoks võtab energiabilanss järgmise kuju: E (sisse) = E (välja), (2.7), kui arvestada energiakadu: E (sisse) = E (välja) + E (kadu), (2.8). Energia voog (q, J s-1 e. W) on energia voolukiirus süsteemi või süsteemist välja (nt. Maa pinnale jõudev päikesekiirguse energia). 2.3 Massi jäävuse seadus Süsteemi all mõeldakse teatud operatsiooni teostamiseks kasutatav seade, või mingi selle konkreetne osa. Süsteemid võivad olla järgmised: - isoleeritud süsteem ei vaheta ümbritseva keskkonnaga ei ainet ega energiat - suletud süsteem vahetab ümbritseva keskkonnaga ainult energiat - avatud süsteem vahetab ümbritseva keskkonnaga nii energiat kui ka ainet

Keemiatehnika
188 allalaadimist
thumbnail
65
doc

AM kordamiskusimused lopueksamiks ( vastused)

Rõhk pumba survetorus p = M+ zm , kus zm on kõrgusvahest põhjustatud rõhk. V ­ vaakum ehk rõhk imitoru selles punktis kuhu vaakummeeter on ühendatud. Pumpade tööparameetrid. Pumba tööd iseloomustavad järgmised parameetrid: 1. Imemiskõrgus hi (m), 2. Kavitatsioon ja kavitatsioonivaru h (m) - ingliskeelses kirjanduses NPSH - net positive suction head ehk lubatav vaakum pumba Tööpiirkonnas, H lub/vac(m), 3. Tõstekõrgus e. surve ( H - m veesammast ), 4. Tootlikkus (jõudlus , vooluhulk) 5. Tarbitav võimsus P (kW), 6. Kasutegur ( absoluutarv või % ), 7. Tööorgani liikumissagedus n ( pöörlemis-või käigusagedus p /min või käiku/minutis ). 1 Küsimus 2. Pumba imemiskõrgus ja selle avaldamine Bernoulli võrrandi kaudu Kui oleks võimalik tekitada pumbas absoluutne vaakum , siis vesi , mille tihedus on 1000 kg/m3 tõuseks imiktorus 10,33 m. Teiste vedelike imemiskõrgus, mille tihedus on veest

Abimehanismid
121 allalaadimist
thumbnail
15
doc

Hüdraulika I eksam

Nende jõudude suurus on võrdeline vedeliku massiga. Näiteks raskusjõud, inertsijõud Pinnajõud- mõjuvad vedeliku pinnale ja võrdelised mõjupindalaga. Pinnajõud pinnaühiku kohta ehk pinnajõu intensiivsus mingis vedelikupunktis FA- pinnaühikule A mõjuv elementaarjõud. Pinnajõu intensiivsus on pinge. Piki pinda mõjub tangentsiaalpinge , risti pinda mõjub normaalpinge p, mida hüdromehaanikas nimetatakse rõhuks. 1.4 Hüdrostaatiline rõhk (Hüdrostaatilise rõhu defineerimiseks vaadeldakse tasakaalus oleva vedeliku massi m, mis on mõttelise tasapinnaga A jagatud kahte ossa. Neid osi peab hoidma koos mingi jõud F p, see on hüdrostaatiline rõhu- ehk survejõud. Selle jõu intensiivsust tasapinna A suvalises punktis nimetatakse hüdrostaatiliseks rõhuks ehk surveks.) Hüdrostaatilisel rõhul on kaks põhiomadust: Hüdrostaatiline rõhk mõjub risti pinnaga. Teise suunalisi jõude ei saa

Hüdraulika i
448 allalaadimist
thumbnail
13
doc

Nimetu

JUHEND VEEBOILERI SOOJUSLIKUKS JA HÜDRAULILISEKS PROJEKTARVUTUSEKS Veeboileriks on antud juhul 1-sektsiooniline kesttorusoojusvaheti. Arvutamisel tuleb arvestada lähteandmetega, mis on toodud eraldi lehel. Enne arvutuste teostamist tuleb tutvuda kesttorusoojusvaheti ehitusega ja tööpõhimõttega (vt. loengumaterjale). Töö- ja arvutuskäik 1. Sissejuhatus Esitada töö eesmärk ning kirjeldada aparaadi tööd koos tähtsamate parameetritega. 2. Temperatuuride graafik ja keskmine logaritmiline temperatuuride vahe Enne temperatuuride graafiku (joonis 1) koostamist tuleb kindlaks teha mõlema keskkonna alg- ja lõpptemperatuurid. Toote (kuuma vee) puhul on teada nii alg- kui lõpptemperatuur (t1, t2). Auru temperatuur on aga protsessis konstantne (ta). Juhul kui on antud ainult auru rõhk (pa), siis tuleb temperatuur leida aurutabelist. Näide. Oletame, et sekundaarauru rõhk pa = 0,39 ata. Sellele vastab temperat

31 allalaadimist
thumbnail
26
docx

Toiduainete tehnoloogia põhiprotsessid

Esitada iga protsessigrupi kohta liikumapanev jõud, vähemalt 3 kaastegurit / takistust (koos toime selgitamisega) ning 1 oluline protsessi tulemuse näitaja. Hüdrodünaamilised protsessid – jõud: rõhkude vahe; kaastegurid: mõõtmed/voolu ristlõike pind (mida suuremad mõõtmed, seda kiirem), temp (mida kõrgem, seda kiiremad protsessid), viskoossus (mida viskoossem, seda aeglasem), vedelik ja selle omadused/olek; olulisus: voolukiirus. Soojuslikud protsessid – jõud: temperatuuride vahe; kaastegurid: viskoossus (mida viskoossem, seda aeglasem), soojusjuhtivus (mida suurem, seda kiiremad), kihi paksus (mida paksem kiht, seda aeglasem), temperatuur (mida kõrgem, seda kiirem); olulisus: agregaatoleku muutus ja temperatuuride ühtlustumine. Massiülekande protsessid – jõud: kontsentratsioonide erinevus; kaastegurid:

Toit ja toitumine
35 allalaadimist
thumbnail
57
rtf

TEHNILINE TERMODÜNAAMIKA

TEHNILINE TERMODÜNAAMIKA SISSEJUHATUS Termodünaamika on teadus energiate vastastikustest seostest ja muundumistest, kus üheks komponendiks on soojus. Tehniline termodünaamika on eelmainitu alaliigiks, mis uurib soojuse ja mehaanilise töö vastastikuseid seoseid. Tehniline termodünaamika annab alused soojustehniliste seadmete ja aparaatide (näiteks katelseadmete, gaasiturbiinide, sisepõlemismootorite, kompressorite, reaktiivmootorite, soojusvahetusseadmete, kuivatite jne.) arvutamiseks ja projekteerimiseks. Tehniline termodünaamika nagu termodünaamika üldse tugineb kahele põhiseadusele. Termodünaamika esimene seadus on energia jäävuse seadus, rakendatuna soojuslikele protsessidele, teine seadus aga määrab kindlaks vahekorra olemasoleva soojuse ja temast saadava mehaanilise töö vahel, st määrab kindlaks soojuse mehaaniliseks tööks muundamise tingimused. Termodünaamika kui teadus hakkas hoogsalt arenem

Termodünaamika
17 allalaadimist
thumbnail
90
pdf

Soojustehnika eksami küsimused

Sel juhul puudub isoleeritud süsteemi ja väliskeskkonna vahel nii soojuslik kui ka mehaaniline vastastikmõju. Isoleeritud termodünaamiline süsteem võib olla ka üksikutest seadmetest ja seadmegruppidest moodustatud ning ümbruskeskkonnast isoleeritud süsteemi tunnustega kooslus. Näited: Materiaalselt avatud süsteemi näideteks sobivad turbiin, pump, ventilaator. Materiaalselt suletud on balloon, kolviga silinder. Termodünaamiline keha. Termodünaamilises süsteemis asuvat keha, mille vahendusel toimuvad termodünaamilised protsessid ning energialiikide vastastikune muundumine, nimetatakse termodünaamiliseks kehaks. Soojusjõuseadmetes on termodünaamiliseks kehaks aine, mis vahendab neis sisalduva või ülekantava energia muundamist tööks. Soojustransformaatorites on termodünaamiliseks kehaks aine, mille kaudu soojus siirdub jahedamalt kehalt kuumemale

tehnomaterjalid
121 allalaadimist
thumbnail
73
doc

Konteinerveod

18 - ülerõhu tekitamiseks tankides ülesõidul. Tankerite inertgaaside süsteemile esitatavad nõuded määrab SOLAS 74 II peatüki 62. reegel. Reegel 62 § 2.2 Süsteemi võimsus peab olema piisav selleks, et iga tanki ükskõik millises osas säilitada niisugune gaaside koostis, kus hapnikku ei oleks üle 8 % mahust ja tankis valitseks ülerõhk igal ajal sadamas ja merel, välja arvatud juhud, kui tank peab olema degaseeritud. § 3.1 Süsteemi tootlikkus peab olema vähemalt 125% maksimaalse lossimise mahust tunnis. §3.2 Süsteemi poolt toodetavas inertgaasis ei tohi hapnikusisaldus ka maksimaalse tarbimise korral ületada 5 %. Ohutusmeetmed inertgaasi süsteemi avarii korral on määratud Meresõidu Ohutuse Komisjoni ringkirjaga 353 ( Maritime Safety Committee). Kui inertgaasisüsteem pole rikke tagajärjel võimeline tootma nõutavas koguses gaasi või hoidma tankides ülerõhku tuleb pumpamisoperatsioon otsekohe lõpetada ja tarvitusele

Laevandus
54 allalaadimist
thumbnail
69
docx

FÜÜSIKA 1 eksami vastused

Pikkuse-nurga saab avaldada teades, et Kahe vektori vektorkorrutis on vektor , mille moodul on võrdne vektorite moodulite ja nendevahelise nurga siinuse korrutisega , siht on risti tasandiga , milles asuvad korrutatavad vektorid ja suund on määratud parema käe kruvi reegliga . [v1 v2]= v1 × v2 = v1 v2 sin kusjuures [v1v2=­[v2v1] 3 SI ühikud SI põhiühikud: Suurus Ühiku nimetus Tähis Pikkus Meeter M Mass Kilogramm Kg Aeg Sekund S Elektrivoolu tugevus Amper A

Füüsika
108 allalaadimist
thumbnail
92
docx

Autod-Traktorid I kordamisküsimused 2013-2014

AUTOD-TRAKTORID ­ I KORDAMIKÜSIMUSED 2013/2014.Õ.-A. 1. Sisepõlemismootorite tüübid Sisepõlemismootorid jagunevad: I. Kolbmootor , kogu tööprotsess toimub mootori silindris; II. Turbiinmootor, pidevatoimeline mootor, mis muundab mehaaniliseks tööks voolava auru, gaasi või vee kineetilist energiat (töötav aine voolab läbi düüside või juhtaparaadi tööratta kõverpinnalistele labadele ja paneb viimase pöörlema. 2. Sisepõlemismootorite liigid Turbiinmootorid jaotuvad: -1 1) auruturbiinmootorid (alates mõni kW... 1200 MW ja rohkem, n = 30 000 min ): e aktiivturbiinid, b) reaktiivturbiinid (töötava aine töö = voolsuuna muutumine + paisumise reaktiivjõud, mille osatähtsus on üle 50%) ; 2) gaasiturbiinmootorid ( võivad tar

Autod-traktorid i
61 allalaadimist
thumbnail
41
doc

10. klassi arvestused

ARVESTUSED Õppeaines: FÜÜSIKA Õpilane: Klass: 10 Õpetaja: 2005 2 SISUKORD I ARVESTUS MEHAANIKA .................................................................................................5 1. SI süsteemi põhimõõtühikud ....................................................................................................5 2. Ühikute teisendamine ja eesliite väljendamine kümne astmetena .......................................................................................................................................................6 3. Kulgliikumine............................................................................................................................6 4. Taustsüsteem..............................................................................................................................7 5. Nihe..........................................................................................................................

Füüsika
1117 allalaadimist
thumbnail
194
pdf

Pneumaatika alused

PNEUMAATIKA ALUSED Koostas: Rein Uulma Sisukord 1 Pneumaatika ajalugu ja kasutatavad ühikud............................................................................ 2 1.1 Suruõhu kasutamise ajalugu............................................................................................. 2 1.2 Suruõhu omadused ........................................................................................................... 2 1.3 Füüsikalised alused .......................................................................................................... 3 1

Tehnoloogia
44 allalaadimist
thumbnail
97
pdf

Pneumaatika alused

PNEUMAATIKA ALUSED Koostas: Rein Uulma Sisukord 1 Pneumaatika ajalugu ja kasutatavad ühikud............................................................................ 2 1.1 Suruõhu kasutamise ajalugu............................................................................................. 2 1.2 Suruõhu omadused ........................................................................................................... 2 1.3 Füüsikalised alused .......................................................................................................... 3 1

Ohuõpetus
238 allalaadimist
thumbnail
29
doc

Füüsika kokkuvõttev konspekt

Ta süütas püssirohu ja lõi samaaegselt kella. ühikulist pinnaelementi selle normaali sihis. Teisest paadist vette pistetud kuuldetorust =limt/S=dt/dS kuuldi kellalööke, mis jõudis kuuljani läbi vee. Nähti valgussähvatust. Mõõdeti ära heli kui on tegemist vedeliku sambaga,mille hilinemine valgussähvatuse suhtes ja kogus on h,siis selle poolt avaldatav paatidevaheline kaugus ning arvutati heli hüdrostaatiline rõhk on võrdne levimise kiirus vees. Mõõtmine näitas, et vedelikusamba kaaluga,mis mõjub ühikulist heli kiirus vees on ligi viis korda suurem kui pinnaelementi,tema normaali sihis. õhus. Heli kiirus tahketes ainetes mõõdeti =mg/S=Vg/S=gSh/S=gh esmakordselt 19. sajandil. Selleks kasutati mitmesaja meetri pikkuseid torusid. Heli, -vedeliku tihedus mida tekitati toru ühe otsa juures, registreeriti toru teise otsa juures

Füüsika
405 allalaadimist
thumbnail
91
doc

Eksami konspekt

..40 c. Töödeldud pind silutakse ja lihvitakse 3...4 tunni möödudes (kasutades ketas- või labadega tööorganiga masinat SO-170, jõudlusega 60...100 m2/ h või muud Euroopa maades toodetud analoogi firmalt Tremiks). Betoonihöörutid Järgmine etapp betoonitöödes on pinna töötlemine betoonihöörutitega. Betoonpõrandate lihvimisseadmed tööorganid on labad (kolm või neli) ning ketas. Toodetakse ka kahe- ja kolmekettalisi pealeistutavaid betoonihõõruteid, mille tootlikkus ületab ühekettaliste oma mitmeid kordi. Eriti märgatav on võit tööjõudluses suurte valupindade puhul. Kõik betoonihõõrutid on varustatud bensiinimootoriga või käsitööriistade puhul eelektrimootoritega. Kolmelabalised on ettenähtud jämelihvimiseks, neljalabalised lõpptöötlemiseks. Masinaid kasutatakse pärast esmast betooni tardumist. Jõudlus oleneb paljudest teguritest: tööee laius, mootori võimsus, laba pöörlemiskiirusest, pinna seisundist, töölise kogemustest.

Ehitusmasinad
229 allalaadimist
thumbnail
55
pdf

K24 mootor

7 mm. Kolmanda silindri ülaosas esineb samuti ovaalsus (0,05 mm) ning vertikaaltelje maksimaalne hälve on 0,04 mm. Neljas silindri maksimaalne ovaalsus on 0,045 mm ning vertikaalteljes maksimaalne hälve 0,03 mm. Tabel 1. Kolvisõrme telje suunalised silindri läbimõõdu mõõtetulemused (baasmõõde 87,00 mm) Mõõtekõrgus Esimene silinder, Teine silinder, Kolmas silinder, Neljas silinder, silindri ülemisest mm mm mm mm servast, mm 0-5 +0,005 -0,05 -0,015 -0,01 10 +0,005 -0,035 -0,01 -0,005 45-50 +0,02 +0,02 +0,02 +0,02

Tehnikalugu
20 allalaadimist
thumbnail
46
pdf

Pinnasemehaanika - Pinnas ja vesi

Teatud sügavusel z suspensiooni pealispinnast ei ole aja t möödudes enam sellise läbimõõduga teri, mille langemiskiirus on suurem kui z/t. Stokes'i valemi alusel on selliste terade diameeter millimeetrites 0,306 z d= (2.3) s - w t kus t on aeg minutites ja z sügavus sentimeetrites. Teistel suurustel on valemiga 2.1 samad ühikud. Samal ajal kui sügavusel z puuduvad terad mille läbimõõt on suurem kui d , ei ole sellest peenemate osade hulk seal muutunud. Nii palju kui neid on teatud mahust allapoole langenud nii palju neid ka ülaltpoolt samasse mahtu juurde tulnud. Järelikult on teatud mahust sügavusel z kadunud kõik osad, mille läbimõõt on suurem kui d, kõigi väiksemate osade hulk aga säilinud muutumatuna. Tähistame osakeste, mille läbimõõt on väiksem kui d, kaalu ja osakeste

pinnasemehaanika
112 allalaadimist
thumbnail
15
doc

Diisel

) . indikaatorit tema ajami inertsist tuleneva ebatäpsuste tõttu pole pa ­ praktilised väärtused : 0,8...0,9 bar.( kiirekäigulistel 0,88...0.9 ) Täiteastme praktilised väärtused : kasutada võimalik . Kiirekäiguliste mootorite inditseerimisel Mida suurem on rõhu langus (p = p0 - pa ), seda puudulikumalt 4-taktilistel kiirekäigulistel 0,75...0,85 kasutatakse tänapäevaseid elektroonseid diagnostika aparaate nagu silinder täitub. 4-taktilised ülelaadimisega 0,85...0,95 MOLIN 3000 jt. Rõhu langus sõltub sisselasketrakti takistusest ja õhu kiirusest 2-taktilised 0,65...0,85

Abimehanismid
81 allalaadimist
thumbnail
18
doc

Füüsika riigieksami konspekt

FÜÜSIKA RIIGIEKSAMI KONSPEKT TTG 2005 SISSEJUHATUS. MÕÕTÜHIKUD SI ­ System International, 7 põhisuurust ja põhiühikut: 1. pikkus 1 m (mehaanika) 2. mass 1 kg (mehaanika) 3. aeg 1s (mehaanika) 4. ainehulk 1 mol (molekulaarfüüsika) 5. temperatuur 1 K (kelvini kraad, soojusõpetus) 6. elektrivoolu tugevus 1 A (elekter) 7. valgusallika valgustugevus 1 cd (optika) Täiendavad ühikud on 1 rad (radiaan) ­ nurgaühik ­ ja 1 sr (steradiaan) ­ ruuminurga ühik. m m Tuletatud ühikud on kõik ülejäänud, mis on avaldatavad põhiühikute kaudu, näiteks 1 ,1 2 , s s kg m 1 N 2 , 1 J ( N m) . s

Füüsika
45 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun