Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Füüsika kodune kontrolltöö "Laserid" (0)

1 Hindamata
Punktid

Esitatud küsimused

  • Mis järeldub Heisenbergi täpsuspiirangust kiirgumisaja t ja kiirguva energia E kohta?
  • Mida mõista kvantseisundi eluea all?
  • Kui pikk see on?
  • Mida nimetatakse luminestsentsiks?
  • Kuidas jaanimardikad helendavad?
  • Kuidas tekib vabakiirgus ehk spontaanne kiirgus?
  • Kuidas tekib simuleeritud ehk sundkiirgus?
  • Kuidas saavutatakse laserites pöördhõive?
  • Kuidas töötab rubiinlaser?
  • Milliste omadustega on laserite kiirgus?
  • Mis on laserite liigitamise aluseks?

Lõik failist

Füüsika kodune kontrolltöö-Laserid #1 Füüsika kodune kontrolltöö-Laserid #2 Füüsika kodune kontrolltöö-Laserid #3
Punktid 50 punkti Autor soovib selle materjali allalaadimise eest saada 50 punkti.
Leheküljed ~ 3 lehte Lehekülgede arv dokumendis
Aeg2013-01-25 Kuupäev, millal dokument üles laeti
Allalaadimisi 11 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor Kaarel Aruoja Õppematerjali autor
Tegemist on 12. klassi vana õppekava järgi teema "Laserid" kohta kodune kontrolltöö, mida saab ka kasutada konspektina. Põhjalik ja vastatud hindele "viis". On olemas ka graafik. Loodan, et on kasu.

Kasutatud allikad

Sarnased õppematerjalid

thumbnail
2
docx

Laser

Pumpamise viisiks võib olla optiline pumpamine, elektronergastus ja keemilised reaktsioonid, aga leidub muidki võimalusi. Tööreziimi järgi eristatakse pidevreziimis töötavat ja impulsslaserit. Töötava aine põhjal eristatakse gaas-, vedelik-, pooljuht- ja dielektriklasereid. [1] Selles artiklis käsitletakse põhiliselt liigitust töötava aine põhjal. Tuleb arvestada, et isegi nõrga võimsusega laserid (mõni millivatt) võivad silmale ohtlikud olla. Laserikiirgus on väikese hajumisega ja kui see on sellise lainepikkusega, mida silm suudab fokuseerida, siis võib silm kiirguse energia koondada väga väiksesse punkti. See tähendab, et isegi nõrk laser võib lühikese ajaga põhjustada silmale püsivat kahju.

Füüsika
thumbnail
13
docx

Laserid

Ülekantud tähenduses mõistetakse valguse all ka teadmisi või tarkust. [1] Tänapäeval puutume laseritega kokku üpris tihti. Lasereid leidub nii meie arvutite CD-lugejates, kui ka CD-kirjutajates. Samuti kasutatakse lasertehnoloogiat nii meditsiinis, ehituses, tööstuses ja paljus muus, millest meil ei pruugi õrna aimdustki olla. Käesolevas uurimistöös võtangi vaatluse alla just erinevad laseritüübid, laserite ajaloo ja kasutusvaldkonnad. 2 LASERIST ÜLDISELT Laser ehk valguskvantgeneraator ehk optiline kvantgeneraator on indutseeritud kiirguse omadustel põhinev seade, mis tekitab monokromaatilist elektromagnetkiirgust spektri optilises, kas siis ultravioletses, nähtavas või infrapunases osas. Sõna "laser" tuleb ingliskeelsest fraasist light amplification by stimulated emission of radiation, mis sõna-sõnalt tõlkides tähendab valguse võimendamist stimuleeritud kiirguse kaudu [2].

Füüsika
thumbnail
4
doc

Laserid

emissiooniks. Stimuleeritud footonil on sama lainepikkus kui teda vallandanud footonil ja kaks footonit võnguvad kooskõlaliselt. Ühesuguse lainepikkusega footonite kohta, mis võnguvad kooskõlaliselt, öeldakse, et nad on koherentsed. Laseri valguse koherentsus on see, mis takistab laseri kiirel laiali hajuda ja teeb selle nii intensiivseks. Laserkiirtele on iseloomulikeks tunnusteks monokromaatilisus, koherentsus, vähene hajuvus, suur võimsus. Kõik laserid sisaldavad ainet, mida saab ergutatud olekusse panna, kuid mis ei kiirga valgust spontaanselt ja neil on valguse või elektrienergia allikas aine pumpamiseks erutatud olekusse. Lasereid liigitatakse tööreziimi, ergasti ja kiirguri järgi. Konkreetset laseritüüpi iseloomustavad tema kiirguse lainepikkused, monokromaatilisus (kiirgusjoone spektraallaius), koherentsusaste, moodistruktuur, polariseeritus, laserikiirte lahknemisnurk,

Füüsika
thumbnail
5
doc

Laserid

võimaldab kiirata kitsaid, koherentseid ja monokromaatilisi valguskimpe. Laseri abil saadakse stimuleeritud kiirgus. Laseri tööpõhimõte seisneb pöördhõive tekitamises optilisse resonaatorisse Lasereid jagatakse tööreziimi, ergasti ja kiirguri järgi. alalislaserid välklaserid (impulsslaser) neodüümlaser tahkislaser rubiinlaser kristall-laser gaaslaser argoon-laser heelium-neoon laser krüptoonlaser süsinikdioksiidlaser eksimeerlaser vedeliklaserid värvlaser pooljuhtlaser (dioodlaser) kemolaserid Tänapäeval kasutatakse sadu erinevaid lasereid. Laserivalgus suudab edastada telefonikõnesid, mängida CD-delt maha muusikat ning lugeda infot arvutite CD- ROM-idelt. Lasereid kasutatakse ka kirurgias. Laserskalpelli abi on võimalik opereerida äärmiselt täpselt ja minimaalse verejooksuga. Laserkiire abil saab ka valutult hambaid puurida

Füüsika
thumbnail
9
doc

Laserid

1960. aasta mais õnnestus Ameerika teadlasel Theodore Maimanil luua esimene laserkiir, erepunase valguse impulss. Tema laseriks oli rubiinlaser ( joon.1). joon. 1 Esimene laser tekitas valgust sünteetilisest rubiinist. Rubiin annab tavalist valgust välklambist ja kiirgab laserivalgust. Sellega oli pandud alus uuele teadusharule, millele leitakse tänapäeval juba sadu ning isegi tuhandeid kasutusi teaduses, tehnikas ja meelelahutuses. Sõna ,,laser" on tulnud ingliskeelsest sõnadest light amplification by stimulated emission of radiation mis tähendab ,,valguse võimendus kiirguse stimuleeritud eritumise kaudu". Laser on seade, mis

Füüsika
thumbnail
5
doc

Laserite kasutamine

Referaat Laserite kasutamine 2010 Laseritest Juba 1917 tõestas Albert Einstein teoreetilist stimuleeritud kiirguse olemasolu, esimene töötav laser loodi aga alles 1960. aastal. Selle aasta 16. märtsil demonstreeris Theodore Maiman esimest funktsioneerivat laserit Hughes'i uurimislaboris. Sõna "laser" moodustavad tähed tulenevad ingliskeelsete sõnade algustähtedest (light amplification stimulated by emission of radiation), mis tähendab "valguse võimendus kiirguse stimuleeritud emissiooni kaudu". Aatom kiirgab valguse footoni siis, kui elektron langeb aatomis kõrgema energiaga tasemelt ehk ergutatud olekust

Füüsika
thumbnail
24
docx

Laser

rakendusi. Laser on üpris eriliste omadustega uut liiki valgusallikas. Tema poolt kiiratud valgus võib olla erakordselt intensiivne, äärmiselt kõrge koherentsuse astmega ning koondunud väga kitsasse lainepikkuste vahemikku, pealegi võib valgus allikast väljuda kitsa paralleelkiirtekimbuna. Laseri väga intensiivne, rangelt koherentne ja kitsa paralleelkiirtekimbuna leviv kiirgus on toonud talle väga palju kasutusalasid. Laser ei ole mitte üksnes energiarikas ja suure intensiivsusega, vaid ühendab lisaks sellele mõningaid valguslainete jooned raadiolainete mõningate omadustega. Laser on abreviatuur. Sõna laser on lühend inglisekeelseist sõnadest "Light Amplification by Stimulated Emission of Radiation" (valguse võimendamine stimuleeritud kiirguse varal). Laser kui optiline kvantgeneraator (kvantelektroonika põhiseade) on valguse stimuleeritud kiirgumisel rajanev koherentvalguse generaator,

Füüsika
thumbnail
10
doc

Referaat Laserist

Laser on üpris eriliste omadustega uut liiki valgusallikas. Tema poolt kiiratud valgus võib olla erakordselt intensiivne, äärmiselt kõrge koherentsuse astmega ning koondunud väga kitsasse lainepikkuste vahemikku, pealegi võib valgus allikast väljuda kitsa paralleelkiirtekimbuna. Laseri väga intensiivne, rangelt koherentne ja kitsa paralleelkiirtekimbuna leviv kiirgus on toonud talle väga palju kasutusalasid. Laser ei ole mitte üksnes energiarikas ja suure intensiivsusega, vaid ühendab lisaks sellele mõningaid valguslainete jooned raadiolainete mõningate omadustega. Laser on abreviatuur. Sõna laser on lühend inglisekeelseist sõnadest "Light Amplification by Stimulated Emission of Radiation" (valguse võimendamine stimuleeritud kiirguse varal). Laser kui optiline kvantgeneraator (kvantelektroonika põhiseade) on valguse stimuleeritud kiirgumisel

Füüsika




Meedia

Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun