Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse Registreeri konto
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

Funktsioon loeng 2 - sarnased materjalid

rdfunktsioon, muutuja, liitfunktsioon, reaalarv, rguse, loga, astmefunktsioon, arcsin, nimetaja, ikese, esialgse, arctan, siinus, arkusfunktsioonid, arccos, rtusele, logaritmfunktsioon, muutumispiirkond, ikesekiirguse, reaalarvud, murd, mmeetriline, rtused, graafik, koosinus, arccot, aritmeetiliste, pliku, kordi, kaudselt, monotoonsed, graafiline
thumbnail
35
pdf

Funktsiooni uurimine loeng 7

Funktsiooni uurimine Funktsiooni kasvamine ja kahanemine Funktsiooni f (x) nimetatakse piirkonnas A kasvavaks, kui a < b f (a) < f (b); kahanevaks, kui a < b f (a) > f (b); iga a, b A korral. f (b) funktsioon kasvab funktsioon kahaneb f (a) f (a) f (b) a b a b Funktsiooni f (x) nimetatakse piirkonnas A monotoonselt kasvavaks, kui a < b f (a) f (b); monotoonselt kahanevaks, kui a < b f (a) f (b); iga a, b A korral. 2 Joone puutuja Monotoonselt kasvav funktsioon y y=f (x) 0 x - teravnurk (0 < < /2)

Matemaatika
54 allalaadimist
thumbnail
21
pdf

Funktsiooni tuletis (jätk) loeng 6

y ' = lim = lim x 2 lim cos x x 0 x 2 x / 20 x0 2 2 2 = cos x MOTT. 2 Ülesanne (kodus): Leida y = cos x tuletis. Diferentseerimise põhivalemid 1 y = const y' = 0 y = arcsin x y' = 1- x2 y = x y ' = x -1 1 1 y = arccos x y' = - y= x y' = 1- x2 2 x 1 1 1 y = arctan x y' = y= y' = - 2 1+ x2 x x 1

Matemaatika
69 allalaadimist
thumbnail
1
odt

Funktsioonid I

valemina antud funktsiooni x selliste väärtuste hulk, mille korral on võimalik funktsiooni f(x)väärtust arvutada Funktsioonide esitamise viisid: Funktsiooni üldmõiste ­ x on sõltumatu Ekstreemumid 1)valemi abil muutuja ja y on sõltuv muutuja . Miinimum Maksimum 2)graafiku abil 3)tabeli abil 4)arvupaarid

Matemaatika
20 allalaadimist
thumbnail
12
pdf

Funktsiooni tuletis - loeng 5

Näide Seega on pidevus funktsiooni diferentseeruvuse tarvilik tingimus. See tingimus ei ole aga piisav, sest leidub funktsioone, mis on küll pidevad, aga mõnedel x väärtustel neil tuletist pole. Näide: Vaatleme funktsiooni y = 3 x, mille graafik on määratud ja pidev muutuja x kõigi väärtuste korral. 11 Näide Selgitame, kas sellel funktsioonil leidub tuletis. Avaldame muudu y = f ( x + x) - f ( x) = 3 x + x - 3 x Kui x = 0, siis y = 3 0 + x - 3 0 = 3 x Piirväärtus y 3 x 1 lim = lim = lim = x 0 x x 0 x x 0 3 x 2

Algebra I
51 allalaadimist
thumbnail
3
doc

Juurfunktsioon

Järvamaa Kutsehariduskeskus Juurfunktsioon Elari Teras AR3 JUURFUNKTSIOONID Juurfunktsioonideks nimetatakse astmefunktsioonide (n > 1) pöördfunktsioone. Funktsioon (ruutjuur) on funktsiooni , x 0 pöördfunktsioon. Tema graafikuks on ruutparabooli üks haru, millele ytelg on puutujaks nullpunktis. Funktsiooni Omadused: Määramispiirkond Muutumispiirkond Nullkoht Funktsioon on kasvav kogu määramispiirkonnas Graafik on kumer kogu ulatuses Minimaalne väärtus y = 0 on kohal x = 0 Graafik läbib punkti (1;1) y= x; x 0 y =3 x

Matemaatika
22 allalaadimist
thumbnail
1
doc

Funktsioon

Funktsiooni määramispiirkonnaks nim. argumendi väärtuste hulka, mille korral saab leida f-ni väärtust. Funktsiooni muutumispiirkonnaks nim. funktsiooni väärtuste hulka. Paaris funktsiooni graafik on sümmeetriline y-telje suhtes. Paaritu funktsiooni graafik on sümmeetriline koordinaatide alguspunkti suhtes. Funktsiooni nullkohaks nim. argumendi väärtust, mille korral funktsiooni väärtus võrdub 0-ga. y = 0 Funktsiooni positiivsuspiirk. nim. argumendi väärtuste hulka, mille korral funktsiooni väärtused on positiivsed. y > 0 Funktsiooni negatiivsuspiirk. nim. argumendi väärtuste hulka, mille korral funktsiooniväärtused on negatiivsed. y < 0 ____________________________________________________________________________________________ Funktsiooni pöördfunktsiooni leidmiseks tuleb a.) vahetada muutujad x ja y b.) saadud avaldisest avaldada y Funktsiooni graafik ja tema pöördfunktsiooni graafik on sümmeetrilised y

Matemaatika
190 allalaadimist
thumbnail
1
doc

Funktsioon

Ande Andekas-Lammutaja Matemaatika ­ Funktsioon Funktsiooniks nimetatakse vastavust, mis seab sõltumatu muutuja x igale väärtusele hulgale X vastavusse sõltuva muutuja y ühe kindla väärtuse hulgast Y (Funktsioon on seos kahe muutuja vahel, kus ühe muutuja igale väärtusele vastab üks kindel teise muutuja väärtus). Võrdelise seose valemiks on y = ax ja tunnuseks a = y/x. Graafikuks on sirgjoon, mis läbib punkte (0;0) ning (1;a). Pöördvõrdelise seose valemiks on y = a/x, kus x 0 ja tunnuseks a = xy. Graafikuks on hüperbool. Lineaarfunktsiooni valemiks on y = ax + b ning graafikuks sirgjoon, mis läbib punkte (0;b) ning (1;a+b). Funktsiooni määramispiirkond (X) on sõltumatu muutuja e. argumendi x väärtuste e

Matemaatika
416 allalaadimist
thumbnail
6
pdf

Funktsiooni mõiste

x2 y2 = f (x2) y3 x3 y1 x1 y1 = f (x1) ·Eeskirja, mis selle seose määrab, nimetatakse funktsiooniks Funktsiooni loomulik määramispiirkond: Argumendi väärtuste hulk, mille korral funktsiooni määrav eeskiri on rakendatav. Vaatleme ainult reaamuutuja funktsioone, st nii X kui ka Y koosnevad reaalarvudest. * jagatise nimetaja ei tohi võrduda nulliga 1 X R f (x ) = x + 3 X = ]- ;-3[ ]- 3; [ * paarisjuure argument peab olema mittenegatiivne X R f (x ) = 2x - 7 X = [3,5; [ *logaritmfunktsiooni argument peab olema positiivne X R ( f ( x ) = log x 3 + 1 ) X = ]- 1; [ 1

Majandusmatemaatika
44 allalaadimist
thumbnail
12
doc

Funktsioonide lahendamine

FUNKTSIOONID. 1. (1997 A) Leidke funktsiooni y = 4x3 ­ 3x2 maksimum- ja miinimumkoht ning kasvamis- ja kahanemisvahemikud. 2 2. (1997 B) Leidke funktsiooni y 2 x määramispiirkond, maksimum- ja x 1 miinimumpunkt ning kasvamis- ja kahanemisvahemikud. 3. Joonisel on antud ruutfunktsiooni y = f(x) ja funktsiooni y = ex graafikud. Leidke a) Ruutfunktsiooni y = f(x) määrav valem; b) Punkti A koordinaadid; c) Funktsiooni y = f(x) nullkohad ja haripunkti koordinaadid; d) Funktsiooni y = ex väärtus kohal, mis vastab funktsiooni y = f(x) absoluutväärtuselt vähimale nullkohale; e) Antud funktsioonide ühine positiivsuspiirkond. 4. (1998) Heinakuhja telglõige on piiratud joonega y = 1 ­ x2 ja sirgega y = 0. Kuhjale toetub koonusekujuline katus, mille telglõike tipunurk on t

Matemaatika
61 allalaadimist
thumbnail
1
docx

Funktsioon - terooria

Matemaatika ,,Funktsioon" test Võrdeline seos ­ muutujad x ja y on seotud valemiga y=ax, kus (a0) Võrdelise seose graafikuks on sirge, mis läbib 0-punkti. a>0 ­ I & III a<0 ­ II & IV Suurust y nimetatakse sõltuvaks suurusest x, kui erinevatele x väärtustele vastavad kindlad y väärtused. · X-sõltumata muutuja · Y-sõltuv muutuja Funktsioon ­ vastavus, mille järgi sõltumatu muutuja igale kindlale väärtusele seatakse vastavusse sõltuva muutuja mingi väärtus Funktsiooni y=f(x) määramispiirkonnaks nimetatakse kõikide selliste muutuja x väärtuste hulka, mille korral saab funktsiooni väärtust y arvutada. (Tähis:X) Funktsiooni y=f(x) muutumispiirkonnaks nimetatakse muutja y kõigi väärtuste hulka.(Tähis:Y) Funktsiooni esitusviisid: valem, sõnaline formuleering, nooldiagramm, graafik, tabel. Funktsiooni nullkohaks nimetatakse argumendi väärtust, mille korral funktsiooni väärtus on null. Võrrand-(f(x)=0)(Tähis:X0)

Matemaatika
75 allalaadimist
thumbnail
2
odt

Funktsiooni uurimine

I Võrdeline seos y = a*x graafikuks sirge II Lineaarne seos y = ax + b graafikuks sirge III Pöördvõrdeline sõltuvus a y= graafikuks hüperbool x IV Ruutfunktsioon y = ax2 + bx + c ;a0 graafikuks parabool a) Avaneb kuhu b) nullkohad [ax2 + bx + c=0] c) -b haripunkt XHP= 2a VI Erijuhud Funktsioon ja funktsiooni määramispiirkond a) a lahenda a 0 1 b) a0 a c) K ui ei r j uhud puuduv ad , on l ahen di k s k ogu r eaal ar vud e hul k Funktsiooni nullkohad 0={x1;x2;x3} Positiivsus- ja negatiivsus piirkond a) Positiivsus piirkond + y(x) 0 b) Negatiiv

Matemaatika
84 allalaadimist
thumbnail
27
ppt

Funktsioonid ja nende graafikud

Funktsioonid ja nende graafikud © T. Lepikult, 2010 Funktsioon Kui muutuva suuruse x igale väärtusele, mis kuulub tema muutumispiirkonda, vastab teise suuruse y üks kindel väärtus, siis öeldakse, et y on x funktsioon. Asjaolu, et üks muutuja on teise funktsioon, tähistatakse y = f(x). Näited: Kuubi ruumala on tema serva pikkuse funktsioon, suusataja poolt läbitud teepikkus on aja funktsioon, vedru deformatsioon on tõmbejõu funktsioon jne. Funktsiooni argument Muutujat x nimetatakse seejuures sõltumatuks muutujaks e. argumendiks. Argumendi x väärtuste hulka, mille puhul saab määrata funktsiooni y väärtusi vastavalt eeskirjale f(x), nimetatakse funktsiooni määramispiirkonnaks

Matemaatika
135 allalaadimist
thumbnail
156
pdf

Kõrgem matemaatika

. . . . . . . . . . . . . . . . . . . 22 2.9 Homogeenne lineaarvõrrandisüsteem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3 Funktsioonid ja jadad 25 3.1 Funktsiooni mõiste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.2 Üksühesus ja pealekujutus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.3 Liitfunktsioon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.4 Pöördfunktsioon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.5 Põhilised elementaarfunktsioonid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 SISUKORD 3.6 Elementaarfunktsioonid . . . . . . . . . . . . . . . . . . . .

Kõrgem matemaatika
94 allalaadimist
thumbnail
39
pdf

Matemaatiline analüüs I konspekt -Tõkestatud hulgad

Kordamine matemaatilise analüüsi I eksamiks matemaatika-informaatika teaduskonnas 04/05 õ.a I FUNKTSIOONID Tõkestatud hulgad Ülalt ja alt tõkestatud hulgad Olgu X mingi reaalarvude hulk. Definitsioon: Kui leidub niisugune reaalarv M , et hulga X iga elemendi x puhul kehtib võrratus x M , siis öeldakse, et hulk X on ülalt tõkestatud, kusjuures arvu M nimetatakse hulga X ülemiseks tõkkeks. Ülalt tõkestatud hulga X elemendid paiknevad seega lõpmatus poollõigus (- , M ] . Definitsioon: Kui leidub niisugune reaalarv m , et hulga X iga elemendi x puhul kehtib võrratus x m , siis öeldakse, et hulk X on alt tõkestatud, kusjuures arvu m nimetatakse hulga X alumiseks tõkkeks.

Matemaatiline analüüs I
73 allalaadimist
thumbnail
13
docx

Matemaatiline analüüs I KT

Matemaatiline analüüs 1. Arvtelg ­ sirge, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Igale arvtelje punktile vastab üks ja ainult üks reaalarv ja vastupidi: igale reaalarvule vastab üks ja ainult üks arvtelje punkt. Öeldu põhjal saab reaalarvud samastada sirge (arvelje) punktidega. Absoluutväärtuse mõiste ­ reaalarvu a absoluutväärtuseks nimetatakse järgmist mittenegatiivset arvu. Reaalarvu a absoluutväärtust |a| võib tõlgendada kui punkti a ja nullpunktivahelist kaugust arvteljel. Absoluutväärtuste omadused:

Matemaatiline analüüs
136 allalaadimist
thumbnail
23
doc

Matemaatiline analüüs KT1 vastused

nimetatakse muutuvaks suuruseks ehk muutujaks. Suurust, mille arvuline väärtus ei muutu, nimetatakse jäävaks suuruseks. Suuruse muutumispiirkond- Muutuva suuruse kõigi võimalike väärtuste hulka nimetatakse selle suuruse muutumispiirkonnaks. Funktsiooni definitsioon- Olgu antud 2 muutuvat suurust x ja y. Funktsiooniks nimetatakse kujutist, mis seab suuruse x igale väärtusele tema muutumispiirkonnast vastavusse suuruse y ühe kindla väärtuse. Funktsiooni argument- muutuja x, sõltumatu. Sõltuv muutuja- muutuja y. Määramispiirkond- argumendi x muutumispiirkonda. Tähis X. y= f(x). Väärtuste hulk- Hulka Y = {f(x) || x kuulub X} Funktsiooni esitamine tabelina- Funktsiooni argumendi võimalikud väärtused esitatakse tabeli ühes reas (veerus) ja neil vastavad funktsiooni väärtused tabeli teises reas (veerus). On võimalik vaid siis, kui funktsiooni argumendil on lõplik arv väärtusi. Funktsiooni esitamine analüütiliselt- Funktsioon esitatakse valemi kujul

Matemaatiline analüüs I
104 allalaadimist
thumbnail
54
doc

Valemid ja mõisted

a1 Jada summa: S = . 1-q Üldliige: an = a1q n -1 . 2.18 Logaritmid 15 Arvu b logaritmiks antud alusel a nimetatakse niisugust arvu c, millega on vaja astendada arvu a, et saada arv b. log a b = c , kui a c = b ( a > 0 a 1) . Asendades teises võrduses c, saame samasuse a loga b = b . Vastav samasus kümnendlogaritmide korral: 10log b = b . Naturaallogaritmide korral: eln b = b . Logaritmide omadused 1. log a 1 = 0 . 2. log a a = 1 . 3. log a mn = log a m + log a n , kui m > 0 ja n > 0 . m 4. log a = log a m - log a n , kui m > 0 ja n > 0 . n 5. log a b = n log a b , kui b > 0 . n 1 6. log a n b = log a b , kui b > 0 .

Matemaatika
1097 allalaadimist
thumbnail
816
pdf

Matemaatika - Õhtuõpik

........ 39 Milleks meile arvu absoluutväärtus? ............ 121 matemaatikute keel ja žanrid ............ 42 Oskussõnad .................................................. 42 Tähed ja sümbolid .........................................43 Matemaatilised žanrid .................................. 44 OSA 3 – arvude sõbrad ja muutuja ....................................... 48 sugulased ....................................... 125 Muutuja erinevates rollides ........................... 48 jada . ................................................... 128 võrdus ja võrdsus ......................... 52 Aritmeetiline jada ........................................129 Matemaatiline võrdus ....................................54 Geomeetriline jada ...........

Matemaatika
198 allalaadimist
thumbnail
32
doc

Matemaatika I küsimused ja mõisted vastustega

....................................... 14 19. Funktsioonide y=sin x, y=cos x , y=loga x , y=ax tuletiste leidmine. .....................................14 20. Tehetega seotud diferentseerimisreeglid. Funktsioonide y = tan x , y = cot x tuletiste leidmine. ........................................................................................................................................ 16 21. Eeskiri pöördfunktsiooni tuletise leidmiseks. Funktsioonide y = arcsin x , y = arccos x, y = arctan x, y = arc cot x tuletiste leidmine. .......................................................................................16 22. Kirjeldada logaritmilise diferentseerimise võtet. Millistel juhtudel seda võtet rakendatakse? Tuua näide. .................................................................................................................................... 17 23. Eeskiri parameetrilisel kujul antud funktsiooni diferentseerimiseks. ......................

Matemaatika
118 allalaadimist
thumbnail
10
doc

Matemaatiline analüüs I konspekt - funktsioon

"Matemaatiline analüüs I" Funktsioon Funktsioon- Kui muutja x igale väärtusele piirkonnas X vastab muutuja y kindel väärtus, siis öeldakse, et y on muutuja x funktsioon piirkonnas X. Sõltumatu muutuja on x, sõltuv y Funktsiooni määramispiirkond-Funktsiooni y määramispiirkonnaks nimetakse argumendi x muutumispiirkonda. Funktsioonide liigid- 1. Paaris funktsioon-rahuldab tingimust f(x)=f(-x) ja see on sümmeetriline y-telje suhtes. (Nt:y=x2) 2.Paaritu funktsioon-rahuldab tingimust f(-x)=-f(x) ja see on sümmetrialine 0 punkti suhtes. (y=sinx) 3.Perioodilised funktsioonid- rahuldab tingimust f(x+T)=f(x), T on periood. 4

Matemaatiline analüüs
258 allalaadimist
thumbnail
25
doc

MATEMAATILINE ANALÜÜS I TEOORIA KONTROLLTÖÖ Küsimused vastustega

arvulisi väärtusi, nimetatakse muutuvaks suuruseks ehk muutujaks. Suurust, mille arvuline väärtus ei muutu, nimetatakse jäävaks suuruseks. Suuruse muutumispiirkond- Muutuva suuruse kõigi võimalike väärtuste hulka nimetatakse selle suuruse muutumispiirkonnaks. Funktsiooni definitsioon- Olgu antud 2 muutuvat suurust x ja y. Funktsiooniks nimetatakse kujutist, mis seab suuruse x igale väärtusele tema muutumispiirkonnast vastavusse suuruse y ühe kindla väärtuse. Funktsiooni argument- muutuja x, sõltumatu. Sõltuv muutuja- muutuja y. Määramispiirkond- argumendi x muutumispiirkonda. Tähis X. y= f(x). Väärtuste hulk- Hulka Y = {f(x) || x kuulub X} Funktsiooni esitamine tabelina- Funktsiooni argumendi võimalikud väärtused esitatakse tabeli ühes reas (veerus) ja neil vastavad funktsiooni väärtused tabeli teises reas (veerus). On võimalik vaid siis, kui funktsiooni argumendil on lõplik arv väärtusi. Funktsiooni esitamine analüütiliselt- Funktsioon esitatakse valemi kujul

Matemaatiline analüüs 1
43 allalaadimist
thumbnail
8
docx

Matemaatiline analüüs I - I teooria töö

1. · Arvtelje mõiste ­ Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Võib väita, et igale arvtelje punktile vastab üks ja ainult üks reaalarv ja vastupidi: igale reaalarvule vastab üks ja ainult üks arvtelje punkt. · Absoluutväärtuse mõiste. Reaalarvu a absoluutväärtuseks nimetatakse järgmist mittenegatiivset reaalarvu: |a| = a kui a 0 -a kui a < 0 . Reaalarvu a absoluutväärtus |a| on punkti a ja nullpunkti vaheline kaugus arvteljel. · Absoluutväärtuse omadused: 1. | - a| = |a| 2. |ab| = |a| |b| 3. |a + b| |a| + |b| 4. |a - b| | |a| - |b| |

Matemaatika analüüs I
485 allalaadimist
thumbnail
8
docx

Matemaatiline analüüs II teooria töö

1. · Arvtelje mõiste ­ Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Võib väita, et igale arvtelje punktile vastab üks ja ainult üks reaalarv ja vastupidi: igale reaalarvule vastab üks ja ainult üks arvtelje punkt. · Absoluutväärtuse mõiste. Reaalarvu a absoluutväärtuseks nimetatakse järgmist mittenegatiivset reaalarvu: |a| = a kui a 0 -a kui a < 0 . Reaalarvu a absoluutväärtus |a| on punkti a ja nullpunkti vaheline kaugus arvteljel. · Absoluutväärtuse omadused: 1. | - a| = |a| 2. |ab| = |a| |b| 3. |a + b| |a| + |b| 4. |a - b| | |a| - |b| |

Matemaatiline analüüs 2
96 allalaadimist
thumbnail
22
docx

Matemaatiline analüüs (vähendatud programm)

valikul 1/4-1/2 lk teksti antud programmi ulatuses. 1. Arvtelje mõiste. Reaalarvu absoluutväärtus. Loetleda absoluutväärtuse omadused. Reaalarvude ja lõpmatuste ümbrused. Tõkestatud hulga definitsioon.  Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Kasutades neid kolme parameetrit, saab arvtelje punktidele seada vastavusse reaalarvud. Võib väita, et igale arvtelje punktile vastab üks ja ainult üks reaalarv ja vastupidi: igale reaalarvule vastab üks ja ainult üks arvtelje punkt. Öeldu põhjal saab reaalarvud samastada sirge (arvelje) punktidega.  Reaalarvu a absoluutväärtuseks nimetatakse järgmist mittenegatiivset reaalarvu: |a| = {−aa , kui a≥ 0 , kui a< 0 Reaalarvu a absoluutväärtust |a| võib tõlgendada kui punkti a ja nullpunkti vahelist kaugust arvteljel

Matemaatiline analüüs i
17 allalaadimist
thumbnail
37
docx

Matemaatiline analüüs l.

Matematiline analüüs l. Jaan Jaano 1. Arvtelje mõiste. Reaalarvu absoluutväärtus. Loetleda absoluutväärtuse omadused. Reaalarvude ja lõpmatuste ümbrused. Tõkestatud hulga definitsioon. Arvtelje mõiste. Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Võib väita, et igale arvtelje punktile vastab üks ja ainult üks reaalarv ja vastupidi: igale reaalarvule vastab üks ja ainult üks arvtelje punkt. Absoluutväärtuse mõiste. Reaalarvu a absoluutväärtuseks nimetatakse järgmist mittenegatiivset reaalarvu: |a| = a kui a 0 -a kui a < 0 . Reaalarvu a absoluutväärtus |a| on punkti a ja nullpunkti vahelist kaugust arvteljel. Absoluutväärtuse omadused: 1. | - a| = |a| 2. |ab| = |a| |b| 3. |a + b| |a| + |b| 4. |a - b| | |a| - |b| | Reaalarvude ja lõpmatuste ümbrused

Matemaatiline analüüs
484 allalaadimist
thumbnail
22
docx

Kõrgem matemaatika 1 kordamisküsimused 2017/2018

19.Arvu absoluutväärtus 20.Muutuvad ja jäävad suurused = 3.14 e = 2,71 x,y,z 06.01 21.Lõik, vahemik, poollõik Vahemik on sirge paiknevate punktide hulk, mis asub kahe punkti vahel Lõik on sirge, mis ühendab kaht punkti A ja B (punktid A ja B kaasa arvatud) Seda lõiku tähistatakse AB Poollõik on reaalarvude hulga alamhulk (), mis koosneb kõigist reaalarvudest 22.Funktsiooni mõiste Seost, mis määrab viisi ( ), kuidas sõltuv muutuja ( ) on seotud sõltumatu muutujaga ( ) selliselt, et igale sõltumatu muutuja väärtusele () vastaks ainult üks sõltuva muutuja väärtus, nimetatakse funktsiooniks. 23.Funktsiooni argument Sõltumatut muutujat nimetatakse funktsiooni argumendiks ja seda tähistatakse tähega x 24.Funktsiooni määramis- ja muutumispiirkond ( ) Funktsiooni määramispiirkonnaks on kõikide selliste muutuja x väärtuste hulk,

Kõrgem matemaatika
134 allalaadimist
thumbnail
16
doc

Matemaatiline analüüs

Tõkestatud hulga definitsioon: reaalarvudest koosnevat hulka A nimetatakse tõkestatuks, kui leidub lõplik vahemik ( a, b ) nii, et A ( a, b ). Tõkestatud hulgad on näiteks kõik lõplikud vahemikud ( a, b ), lõigud [a, b] ja poollõigud [a, b), (a, b]. Tõkestamata hulgad on aga näiteks lõpmatud vahemikud (-, a), (a, ) ja lõpmatud poollõigud (-, a], [a, ). 2. Jääv ja muutuv suurus. Suuruse muutumispiirkond. Funktsiooni definitsioon. Funktsiooni argument, sõltuv muutuja, määramispiirkond ja väärtuste hulk. Funktsiooni esitamine tabelina ja analüütiliselt. Funktsiooni graafiku mõiste. Graafiku omadused. V: Jääv ja muutuv suurus: Suurust, mis võib omandada erinevaid arvulisi väärtusi, nimetatakse muutuvaks suuruseks ehk muutujaks. Suurust, mille arvuline väärtus ei muutu, nimetatakse jäävaks suuruseks. Näiteks ühtlase liikumise korral on kiirus jääv suurus ja läbitud teepikkus muutuv suurus. Samas mitte ühtlase liikumise korral on ka kiirus

Matemaatiline analüüs
231 allalaadimist
thumbnail
35
pdf

Mitmemuutuja funktsioonid

MITME MUUTUJA FUNKTSIOON 1. Punkti ümbrus. Kinnine ja lahtine piirkond. Mitme muutuja funktsioon ja selle määramispiirkond. Def. 1.1. ( 0 0 )0 Punkti P x1 , x 2 ,..., x n ümbruseks n-mõõtmelises ruumis R n nimetatakse punktide hulka { U ( P ) , mis rahuldavad tingimust U ( P ) = Q( x1 , x 2 ,..., x3 ) R n ( P, Q ) < , kus } ( P, Q ) = PQ = (x1 - x10 ) + (x 2

Matemaatiline analüüs 2
240 allalaadimist
thumbnail
32
pdf

Matemaatiline analüüs II konspekt - MITME MUUTUJA FUNKTSIOONID

Kordamine eksamiks aines matemaatiline analüüs II (2004/2005 õa kevad) §1. MITME MUUTUJA FUNKTSIOONID 1. Ruum R m , hulgad selles ruumis Def. Kõigi m reaalarvust koosnevate järjestatud süsteemide P = ( x1 ,..., x m ) hulka nimetatakse m-mõõtmeliseks ruumiks. Def. Kui m-mõõtmelises ruumis defineeritakse süsteemide P = ( x1 ,..., x m ) ja Q = ( y1 ,..., y m ) m vaheline kaugus d (P, Q ) valemiga d (P, Q ) = (x - y i ) , siis nimetatakse seda ruumi

Matemaatiline analüüs II
187 allalaadimist
thumbnail
15
docx

Matemaatiline analüüs I kontrolltöö

Punktid 1-22 1. Arvtelje mõiste. Reaalarvu absoluutväärtus. Loetleda absoluutväärtuse omadused. Reaalarvude ja lõpmatuste ümbrused. Tõkestatud hulga definitsioon. a. Arvtelje mõiste Arvteljeks nim sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Kasutades neid kolme parameetrit, saab arvtelje punktidele seada vastavusse reaalarvud. Igale arvtelje punktile vastab ainult üks reaalarv ja vastupidi. b. Reaalarvu absoluutväärtus Reaalarvu absoluutväärtuseks nimetatakse järgmist mittenegatiivset arvu |a|= a, kui a 0, -a, kui a<0 c. Loetleda absoluutväärtuse omadused |-a|=|a|; |ab|=|a|*|b|; |a+b||a|+|b|;|a-b||a|-|b| d. Reaalarvude ja lõpmatuste ümbrused d.i. Reaalarvu a ümbruseks nim suvalist vahemikku (a-,a+), kus on ümbruse raadius. d.ii

Matemaatiline analüüs
51 allalaadimist
thumbnail
6
docx

Matemaatiline analüüs I KT konspekt vähendatud programm

Funktsiooni f nim perioodiliseks, kui leidub konstant C>0 nii, et iga xX korral kehtib võrdlus f(x+C)=f(x). Väiksemat sellist konstanti C nim funkt f perioodiks. Kasvamis- ja kahanemispiirkond. Olgu funktsiooni maaramispiirkonna alamhulgas D kaks väärtust x1 ja x2, kus kehtib võrratus x1< x2. Kui f(x1) < f(x2), siis on funktsioon f kasvav hulgas D, graafik tõuseb. Kui f(x1) >f(x2), siis on f hulgas D kahanev ja graafik langeb. Astmefunktsioon on kujul y=xa , kus a on nullist erinev konstantne asendaja. Kui a on paaritu arv, siis X=R ja Y=R. Kui a on paarisarv, siis X=R Y=(0; ). Eksponentfunktsioon on kujul ax , kus a>0 ja ei võrdu ühega. X=R ja Y=(0; ). Trigonomeetrilised funktsioonid on y = sin x, y= cos x, y = tan x ja y = cot x. y = sin x : X = R, Y = [-1, 1] , y = cos x : X = R, Y = [-1, 1] , y = tan x : X = R { (2k+1)/2 * ||k Z}Y=R y = cot x : X = R {k || k Z}, Y = R. + graafikud ! 4

Matemaatiline analüüs
143 allalaadimist
thumbnail
64
pdf

Kolokvium 1 materjal

¨s I, TTU Tallinn 2001, 227 lk, ISBN 9985-59-289-1 ¨ Raamatukogu Viitenumber http://www.lib.ttu.ee TTU ~opikute osakonnas 517/T-15 c Ivar Tammeraid, 2001 Sisukord 0.1. Eess~ ona K¨aesoleva ~ oppevahendi aluseks on autori poolt viimastel aastatel Tallinna Tehnika¨ ulikoo- lis bakalaureuse~ oppe u ¨li~ opilastele peetud u ¨he muutuja funktsiooni diferentsiaal- ja inte- graalarvutuse loengud nimetuse "Matemaatiline anal¨ uu¨s I" all. Siiski ei ole tegu pelgalt u ¨hel semestril esitatu kirjapanekuga. Lisatud on paljude v¨aidete t~oestused, mille esi- tamiseks napib loengutel aega. Samuti on tunduvalt mahukam n¨aite¨ ulesannete hulk. ¨ Uhtses kontekstis on lisatud ka keskkoolis-g¨ umnaasiumis matemaatilisest anal¨ uu¨sist esi- ~ tatu

Matemaatiline analüüs
65 allalaadimist
thumbnail
273
pdf

Lembit Pallase materjalid

Dots. Lembit Pallas TTU¨ Matemaatikainstituut V-404, tel. 6203056 e-post: [email protected] K¨asitletavad teemad on toodud punktide kaupa. Neid punkte tuleb vaadelda ka kui kollokviumide ja eksami teooriak¨ usimusi. 1. Funktsiooni m~oiste ja esitusviisid 2. Funktsioonide liigitamine (paaris- ja paaritud funktsioonid, perioodilised funktsioo- nid, kasvavad ja kahanevad funktsioonid) 3. P¨o¨ordfunktsioon 4. Liitfunktsioon 5. Jada piirv¨aa¨rtus 6. Funktsiooni piirv¨aa¨rtus ¨ 7. Uhepoolsed piirv¨aa¨rtused 8. L~opmatult kasvavad ja l~opmatult kahanevad suurused 9. Piirv¨a¨artusteoreemid 10. L~opmatult kahanevate suuruste v~ordlemine 11. Funktsiooni pidevuse m~oiste. Tarvilik ja piisav tingimus funktsiooni pidevuseks 12. Elementaarfunktsioonide pidevus 13. L~oigul pidevate funktsioonide omadused 14. Funktsiooni katkevuspunktid 15

Matemaatiline analüüs
807 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun