Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

Füüsika ülesanded lahendustega - sarnased materjalid

prooton, liikumishulk, 5700, induktsioon, haamer, punktlaeng, vektor, pesapall, latt, gaas, hõõrdejõud, erisoojus, 4190, kruusi, kuulide, laengud, elektron, mahtuvus, magnetväli, magnetilise, liikumishulga, õnnetust, libiseb, jõumoment, jõuvektor, plaadile, 10kg, balloonis, veab, nöör, homogeenne, summaarne, langeva, visatakse, kõrgele
thumbnail
38
pdf

Füüsika lahendused 45-86

tagasi. Tema kiirus enne põrget on 30 m/s ja pärast põrget 20 m/s. Leida liikumishulga muut ja keskmine jõud, mida sein avaldab pallile, kui põrge kestab 0.010 s. Lahendus: Joonis. Palli mass m = 0,4 kg Palli kiirus enne põrget v1= -30 m/s Palli kiirus pärast põrget v2= 20 m/s Põrke kestvus t = 0,010 s Liikumishulk e. impulss (vektor) ⃗ ⃗ ⃗ 0,4 30 / = 2 / ⃗ 0,4 20 8 / Liikumishulga muut avaldub ⃗⃗⃗⃗⃗⃗ ⃗ ⃗ 8 2 / Keskmise jõu leiame järgmiselt ⃗⃗⃗⃗⃗⃗ / ⃗⃗ = 2000 / = 2000 N , 46. Jalgpalli mass on 0.40 kg. Ta liigub esialgu horisontaalselt vasakule kiirusega 20 m/s,

Füüsika
69 allalaadimist
thumbnail
7
pdf

Füüsika 2009 kursuse töö ülesanded

0 m/s. Kui suur on A kiirus? 49. Kaks keha liiguvad hõõrdevabalt teineteise suunas ja kleepuvad kokku. Keha A mass on 0.50 kg ja keha B mass 0.30 kg. Enne põrget liiguvad mõlemad kiirusega 2.0 m/s. Leida ühendkeha kiirus 50. Auto massiga 2.0 tonni sõidab kiirusega 10 m/s itta ja auto massiga 1.0 tonni kiirusega 15 m/s põhja. Tänavanurgal põrkavad nad kokku ja paiskuvad kägarana kirdes paiknevale haljasalale. (1) Leida autode süsteemi liikumishulk enne õnnetust. (2) Leida kägara kiirus pärast õnnetust, kui selle hõõrdumine vastu maad jätta arvestamata. JÕUMOMENT JA LIIKUMISHULGA MOMENT 51. Et kinnikiilutud mutrit lahti keerata, paneb töömees mutrivõtmele pikenduseks torujupi ja astub selle otsa peale. Mehe kaal on 900 N. Kaugus mutrist torujupi lõpuni on 80 cm ja mutrivõti moodustab horisontaaliga 19 kraadi. Leida jõumomendi suurus ja suund. 52. 16 m pikkuse toru mass on 2.1 tonni

Füüsika
146 allalaadimist
thumbnail
28
pdf

Impulss, energia, töö

KOOLIFÜÜSIKA: MEHAANIKA3 (kaugõppele) 3. IMPULSS, TÖÖ, ENERGIA 3.1 Impulss Impulss, impulsi jäävus Impulss on vektor, mis on võrdne keha massi ja tema kiiruse korrutisega r r p = mv . Mehaanikas nimetatakse impulssi vahel ka liikumishulgaks. See on vananenud mõiste ja selle kasutamine ei ole otstarbekas. Nii näiteks on ka elektromagnetväljal impulss, mille üheks avaldusvormiks on valgus rõhk. Elektromagnetvälja korral aga on liikumishulga mõiste kohatu. Impulsi mõiste on kasulik seetõttu, et teatud juhtudel, näiteks kehade põrgetel, kehtib impulsi jäävuse seadus

Füüsika
51 allalaadimist
thumbnail
9
odt

Füüsika kokkuvõtlik materjal

kineetiline (Ek). Tähis E (J) Potentsiaale energia on asendienergia. Ep= mgh Kineetiline energia on liikumisenergia. Ek= mv2 /2 · Võimsus on töö tegemise kiirus. , milles N ­ võimsus (W) A ­ töö (J) t ­ töö tegemise aeg (s) · Mehaanilise energia jäävuse seadusi: energia ei teki ega kao vaid muundub ühest liigist teise. · Kesktõmbekiirendus näitab, millise kiirusega muutub kiiruse vektor suunda. Kesktõmbekiirendus on alati suunatud ringi keskpunkti poole. , milles ak - kesktõmbekiirendus v ­ keha kiirus, joonkiirus r ­ raadius · Võnkeperiood on ühe täisvõnke arv ringi ajaühikus. Tähis f ja ühik (1Hz) · Hälve on keha kaugus tasakaaluasendis. · Võnkeamplituut on maksimaalne hälve. SOOJUÕPETUS IDEAALNE GAAS JA TERMODÜNAAMIKA ALUSED

Füüsika
85 allalaadimist
thumbnail
18
doc

Füüsika riigieksami konspekt

s liikumisest (hõõrdumise tõttu, hõõrdetegur ). Taustkeha on keha, mille suhtes vaadeldakse kvalitatiivselt (ilma numbriliste väärtusteta) mingi teise keha liikumist. Taustsüsteem koosneb: 1. taustkehast 2. sellega seotud koordinaadistikust 3. ajamõõtjast (kellast) Taustsüsteemi abil saab mingi keha liikumist määratleda kvantitatiivselt. Teepikkus on läbitud tee pikkus trajektooril. [l ] SI = 1m . Nihe s on suunatud sirglõik ehk vektor keha algasukohast lõppasukohta. Sirgliikumisel s =l m Kiirus näitab ajaühikus läbitud teepikkust. [v ]SI = 1 . s l v = = vk . Tavaliselt see kiirus v ongi keskmine kiirus vk. t s

Füüsika
45 allalaadimist
thumbnail
18
doc

Füüsika riigieksami konspekt

s liikumisest (hõõrdumise tõttu, hõõrdetegur ). Taustkeha on keha, mille suhtes vaadeldakse kvalitatiivselt (ilma numbriliste väärtusteta) mingi teise keha liikumist. Taustsüsteem koosneb: 1. taustkehast 2. sellega seotud koordinaadistikust 3. ajamõõtjast (kellast) Taustsüsteemi abil saab mingi keha liikumist määratleda kvantitatiivselt. Teepikkus on läbitud tee pikkus trajektooril. [l ] SI = 1m . Nihe s on suunatud sirglõik ehk vektor keha algasukohast lõppasukohta. Sirgliikumisel s =l m Kiirus näitab ajaühikus läbitud teepikkust. [v ]SI = 1 . s l v = = vk . Tavaliselt see kiirus v ongi keskmine kiirus vk. t s

Füüsika
1329 allalaadimist
thumbnail
5
doc

Füüsika I kursuse tasemetöö kokkuvõte

Tasemetöös pead oskama leida: 1)Auto: *Raskusjõudu; *Veojõudu; *Höördejõudu; *Resultantjõudu; *Kiirendust; *Lõppkiirust; *Läbitud teepikkust; *Kineetilist energiat. 2)Liikumine kurvis ­ kesktõmbejõud , liikumine kumeral ja nõgusal sillal. 3)Arvutada rehvirõhku sõltuvalt temperatuurist. 4)Teadma seadusi: *Newtoni seadusi; *Gravitatsiooni seadust; *Impulsi jäävuse seadust. Vastused: *1)Auto raskusjõud: Raskusjõud on jõud millega Maa tõmbab keha enda poole Raskusjõud on kehale mõjuv jõud. ( F = mg , kus g on vabalangemine ja võrdub 9,8m/s2 ja m on mass). Näide: Kosmoselaev liigub Maa lähedases ruumis vertikaalselt üles kiirendusega 40m/s2, kui

Füüsika
107 allalaadimist
thumbnail
41
doc

10. klassi arvestused

Mõlemale kehale mõjuv gravitatsioonijõud on suunatud piki kehi ühendavat sirget. Gravitatsiooniseadust võib kasutada igasuguse kujuga kehade vahelise gravitatsioonijõu arvutamiseks juhul, kui kehade mõõtmed on nendevahelise kaugusega võrreldes väikesed. Kui gravitatsioonijõud mõjub maakera ja kivitüki vahel, siis ilmselt mõjub see ka poole maakera ja kivitüki vahel. Gravitatsioonikonstant: G = 6,6720 10-11 N m 2 kg -2 2 Vektor ­ vedav, kandev. Arvulise väärtusega ja kindla suunaga suurus. 3 Gravitatsioon ­ raskus. Raskustung, kogumaailmne masside tõmbumine, kõigile kehadele omane tung üksteist vastastikku külge tõmmata. Gravitatsiooniseaduse sõnastas 1689. aastal inglise teadlane I. Newton. 9 13. Kehade vaba langemine

Füüsika
1117 allalaadimist
thumbnail
26
docx

Mehaanika kordamine

F a m jõud mass kiirendus keha mass on suurus mis iseloomustab keha inertsi ja gravitatsioonilisi omadusi mida suurem on keha mass seda suuremat jõudu tuleb tema kiiruse muutumiseks rakendada Newtoni III seadus Kaks keha mõjutavad teineteist võrdsete ühel sirgel mõjuvate vastassuunaliste jõududega Jõud on ühe keha mõju teisele kehale Jõud on kehade vastastikkuse mehaanilise mõju mõõt. Kehad mõjutavad üksteist vahetult Jõud on vektor mida iseloomustavad väärtus ja rakenduspunkt Gravitatsiooni jõud Gravitatsioon ladina k – raskus on üldine mateeria omadus mis avaldub kehade vastastikkuses tõmbumises. Raskusjõud ja kaal Raskusjõud F (N) võrbub keha massi m (kg) ja vabalangemise kiirenduse g (m/s2) F=mg Jõudu millega keha maa külgetõmbe tõttu mõjutb alust või riputusvahendit nimetatakse keha kaaluks keha kaal ei ole rakendatud kehale vaid alusele või riputusvahendile raskusjõudu tähistatakse tähega P

Füüsika
4 allalaadimist
thumbnail
27
doc

Mehaanika

F = 130 kN = 130 000 N a = 130 000 / 70 = 1856 m/s2 t=? t = 27,78 / 1856 = 0,015 s 1.1.6.1. Gravitatsioonijõud. Jõud on kehade vastastikuse mehaanilise mõju mõõt. Kehad võivad üksteist mõjutada vahetult (näiteks rõhumine ja hõõrdumine) ning ka väljade vahendusel. (gravitatsiooniväli, elektri ­ ja magnetväljad, tuumaväli). Jõud on vektor, mida iseloomustavad väärtus (suurus), suund ja rakenduspunkt. Sirget, mida mööda jõud on suunatud, nimetatakse jõu mõjusirgeks. Gravitatsioon ( ladina keeles - gravitas - raskus.) on üldine mateeria omadus, mis avaldub kehade vastastikuses tõmbumises. Gravitatsioonile alluvad kõik kehad olenemata mõõtmetest ja massist, hiiglaslikest taevakehadest kuni üliväikeste elementaarosakesteni. Näiteks Kuu põhjustab looteid (tõusu - ja mõõnalaineid ookeanides). Osutub, et ka

Füüsika
193 allalaadimist
thumbnail
37
pdf

FÜÜSIKA I PÕHIVARA

Tehted vektoritega: 1. Vektori korrutamine skaalariga. av = av 2. Vektorite liitmine. v = v1 + v2 3.Vektorite skalaarne korrutamine. Kahe vektori skalaarkorrutiseks nimetatakse skalaari , mis on võrdne nende vektorite moodulite ja nendevahelise nurga koosinuse korrutisega. ( v1 v2 ) = v1· v2 = v1 v2 cos , kusjuures v1· v2 = v2· v1 4. Vektorite vektoriaalne korrutamine. Kahe vektori vektorkorrutis on vektor , mille moodul on võrdne vektorite moodulite ja nendevahelise nurga siinuse korrutisega , siht on risti tasandiga , milles asuvad korrutatavad vektorid ja suund on määratud parema käe kruvi reegliga . [v1 v2] = v1 × v2 = v1 v2 sin , kusjuures [v1 v2 ] = ­ [v2 v1 ] 4 SI süsteem. (Systeme Internationale) * Pikkus (m)

Füüsika
19 allalaadimist
thumbnail
24
pdf

Füüsika 1 eksam

Sissejuhatus Erinevad ühikud rad rad 1 2 = 1Hz 1 = Hz s s 2 Vektorid r F - vektor r F ja F - vektori moodul Fx - vektori projektsioon mingile suunale, võib olla pos / neg. r Fx = F cos Vektor ristkoordinaadistikus Ükskõik millist vektorit võib esitada tema projektsioonide summana: r r r r F = Fx i + Fy j + Fz k , millest vektori moodul: F = Fx2 + Fy2 + Fz2 Kinemaatika Kiirus Keskmine kiirus

Füüsika
193 allalaadimist
thumbnail
22
doc

Füüsika 1 Kodutöö 1

xxxxxxx Füüsika 1 Kodutöö ülesanded Õppeaines: Füüsika 1 Trantsporditeaduskond Õpperühm: xxxxx Juhendaja : Peeter Otsnik Tallinn 2014 Füüsika 1 Ül. 1 Antud x = 10 – 2t + t3 t=2s r=4m Leida a(kogu) = ? Lahendus: a(n) = v2 / r v = x(t)’ v(x) = (10 – 2t + t3)’ = -2 + 3t2 v(t=2)= 1-2 + 2*22 = 10 m/s a(n) = 102 / 4 = 25 m/s2 a(t) = (v)’ a(t)= (-2 + 3t2)’ = 6t a(t=2) = 6*2 = 12 m/s2 a(kogu)2 = a(n)2 + a(t)2 = 252 + 122 = 769 a(kogu) = 27,7 m/s2 Vastus. Kogukiirendus ajamomendil t = 2 s on 27,7 m/s2. Ül. 2 Antud y0 = 2 m x0 = 7 m Leida v(alg) = ? v(lõp) = ? Lahendus: Leiame aja t Vaatleme vertikaalliikumist v0 = 0 m/s v(lõp) = ... y0 = 2 m g = a = 9.8 m/s2 y0 = v0t + at2/2 gt2/2 = 2 t2 = 4 / 9,8 t = 0,64 s v = v0 + at v(vert) = 0 + 9,8 * 0,64 = 6,2 m/s Vaateleme horisontaalliikumist v = s/t v(hori) = 7m / 0,64s = 10,9m/s v(lõp)2 = v(vert)2 + v(horis)2 v(lõp)=

Füüsika
21 allalaadimist
thumbnail
4
doc

Jõud, impulss ja energia

Ek2=mv'2/2 = 98J Epruss= 2450-98=2352J Epruss=A A=F*s -> F = 2352/0,08=29 400N F=? F= 29 400N 2. Variant 1. Impulss, impulsi jäävuse seadus Impulss on vektor, mis on võrdne keha massi ja tema kiiruse korrutisega. p=mv (m ­ mass, v on kiirus, p ­ impulss) Impulsi ühikuks on kg*m/s kohta. Impulsi jäävuse seadus: suletud süsteemi koguimpulss on jääv suurus, mis tahes ajahetkel. 2. Mehaaniline töö, pos. ja neg. Töö Mehaanilist tööd tehakse siis, kui mingi keha liigub mingi jõu mõjul teatud teepikkuse. Mehaaniline töö ­ A=Fs (F on mõjuv jõud ja s läbitud teepikkus). Kui jõud ei mõju

Füüsika
111 allalaadimist
thumbnail
10
odt

Füüsika 10. klassi teemad

Keha kaal P N Dünamomeeter Elastsusjõud Fe N Dünamomeeter 2 Kiirendus a m/s Kaudne mõõtmine Kiirus v m/s Spidomeeter Keha impulss p kg*m/s Kaudne mõõtmine 2. Selgita mõisteid INERTS-nähtus, kus kõik kehad püüavadoma liikumise kiirust säilitada MASS-inertsuse mõõt KEHA KAAL-jõud, millega keha mõjutab tuge või riputusvahendit raskusjõu tõttu IMPULSS-ehk liikumishulk on keha massi ja kiiruse korrutis INERTSUS-keha omadus, mis seisneb selles, et keha kiiruse muutmiseks antud suuruse võrra peab teise keha mõju esimesele kestma teatud aja JÕUD-vastastikmõju mõõt HÕÕRDEJÕUD-mõjub liikuvatele ja paigalseisvatele kehadele ja tekib kehade vahetul kokkupuutel, mõjub pikki kokkupuutepinda GRAVITATSIOON-Maa külgetõmbejõud ELASTSUSJÕUD-keha kuju muutumisel ehk deformeerimisel tekkiv jõud, deformatsiooniga vastassuunaline

Füüsika
60 allalaadimist
thumbnail
37
pdf

DÜNAAMIKA

KOOLIFÜÜSIKA: MEHAANIKA2 (kaugõppele) 2. DÜNAAMIKA 2.1 Newtoni seadused. Newtoni seadused on klassikalise mehaanika põhialuseks. Neist lähtuvalt saab kehale mõjuvate jõudude kaudu arvutada keha liikumise. Newtoni I seadus Iga vaba keha on kas paigal või liigub ühtlaselt ja sirgjooneliselt. Vaba keha all mõistame keha, millele ühtegi jõudu ei mõju või millele mõjuvad jõud tasakaalustavad üksteist. Newtoni I seadus tähendab, et me vaatame keha liikumist inertsiaalsest taustsüsteemist. Rangelt võttes on inertsiaalsüsteemiks mistahes kinnistähega seotud taustsüsteem, paljudel juhtudel võime ka maapinnaga seotud taustsüsteemi lugeda inertsiaalsüsteemiks. Iga inertsiaalsüsteemi suhtes ühtlaselt liikuv taustsüsteem on samuti inertsiaalsüsteem. Newtoni II seadus Kehale mõjuv jõud määrab keha kiirenduse. Valemina r r F = ma , kus m on vaadeldava keha mass. Juhul kui kehale mõjub samaaegselt mitu erinevat jõudu, määrab keha kiirenduse kehale

Füüsika
98 allalaadimist
thumbnail
5
rtf

Füüsika konspekt 11kl

Brown'i liikumine on nähtus, mis kujutab endast vedelikus või gaasis hõljuvate mikroskoopiliste osakeste korrapäratut liikumist. Liikumine toimub kuna kaootiliselt liikuvad vedeliku või gaasi molekulid põrkuvad kokku tahkete osakestega ning muudavad selle kiirust ja suunda. Osake saab molekulidelt erinevas suunas erineva arvu lööke, seetõttu muutb temale üleanta vimpulss pidevalt. Mida väiksemad on osakese mass ja mõõtmed, seda märgatavam on liikumine. Nr. 21. Ideaalne gaas. Gaasi rõhk. Molekulaarkineetilise teooria põhivõrrand. Ideaalne gaas on selline gaas, mille molekulide mõõtmeid pole vaja arvestada ja mille molekulidevaheline vastastikmõju on tähtsusetult väike. Gaasi rõhk on tingitud gaasimolekulide põrgetest vastu seinu. Molekulaarkineetilise teooria põhivõrrand: p=m0*n*v2/3. Nr 22. Temperatuur. Absoluutse temperatuuri skaala ja selle seos Celsiuse skaalaga. Temperatuur on füüsikaline suurus, mis iseloomustab süsteemi või keha soojuslikku

Füüsika
74 allalaadimist
thumbnail
25
doc

Termodünaamika õppematerjal

(2) Eksisteerib kindel kvantitatiivne seos molekulide kollek-tiivi omaduste ja üksikmolekuli iseloomustava füüsikalise parameetri keskväärtuse vahel. (3) Aine makroskoopiliste ning mikroskoopiliste omaduste vaheliste seoste leidmiseks on vaja teada vaid üksikmolekule iseloomustavate suuruste teatud tõenäoseid väärtusi. Molekulaarkineetilises teoorias kasutatakse ideaalse gaasi mudelit. Sisuliselt on ideaalne gaas antud definitsiooniga: (i) Ideaalse gaasi molekulid on punktmassid, mille kogu-ruumala võrreldes gaasi sisaldava anuma ruumalaga on kaduvväike, s.t. seda ei arvestata. (ii) Ideaalse gaasi molekulide vahel puuduvad tõmbe- ja tõukejõud (molekulaarjõud), väljaarvatud molekulide põrgete korral ilmnevad lühiajalised tõukejõud. Põrked on absoluut-selt elastsed. Paljud kergemad gaasid alluvad normaaltingimustel küllalt hästi ideaalse gaasi mudelile.

172 allalaadimist
thumbnail
15
doc

Füüsika I eksami piletid

(=0) süs. omavõngete sagedusega 0. §44. Samasihiliste võnkumiste liitmine. Mitme ül. lahendamine, nt. samasihiliste võnkumiste liitmine, osutub palju lihtsamaks ja piltlikumaks, kui kujutada harm. võnkumisi graafiliselt, vektoritena tasapinnal. Nii saadud skeemi nim. vektordiagrammiks. Valime telje ning tähistame selle tähega x. (joon.7) Teljel võetud punktist O joonest. vektori pikkusega a, mis mood. teljega nurga . Kui panna see vektor pöörlema nurkkiirusega 0, siis liigub vektori otspunkti projektsioon teljel x mööda telge punktide ­a ja +a vahel ning selle projektsiooni koordinaat muutub ajas seaduse x=a cos( 0t+a) järgi. Järelikult võngub vektori otspunkti projektsioon teljel harm.-lt. Selle võnkumise amplituud on võrdne vektori pikkusega, nurksagedus vektori pöörlemise nurkkiirusega ja algfaas võrdne nurgaga, mille vektor moodustas teljega aja arvest. alghetkel. Öeldust järeldub, et harm

Füüsika
1097 allalaadimist
thumbnail
7
docx

KESKKONNAFÜÜSIKA KT-Valemid

1 2 2 Gaasi rõhk: p= nmv = n Ek 3 3 Atmosfääri normaalrõhk: 1 atm = 101300 Pa = 1013 hPa = 1.013 bar = 760 mm Hg Aine hulk Mõisted: kõikide molekulide arv N, molekulide arv 1 moolis NA, aine hulk µ, molaarruumala Vm N Aine hulk: µ= NA Molaarmass: M =N A m m3 dm 3 Molaarruumala: V m =0,0224 =22,4 mol mol Ideaalne gaas Mõisted: gaasi rõhk p, gaasi ruumala V, moolide arv (mool - aine hulk kus sisaldub Avogadro arv (6,02 × 1023) loendatavat osakest μ, universaalne gaasikonstant 8.31 J/(mol*K) R, temperatuur T (K) pV Olekuvõrrand: =const ⇛ pV =μRTRT T Isobaariline protsess W =F Δ x F p= ⇛ F= pA A W =pA Δ x ⇛ A Δ x=V ⇛ W =p Δ V ⇛ W =p ( V 2−V 1 ) Termodünaamika 1. seadus Mõisted: soojushulk Q, siseenergia juurdekasv ∆U, töö W

Keskkonafüüsika
2 allalaadimist
thumbnail
4
doc

Gravitatsiooniseadus ja võnkumine

Gravitatsiooniseadus Tuiklemine Keele võnkumised Bernoulli võrrand Baromeetriline valem Jõud, millega kaks keha tõmbuvad, on võrdeline Samasihiliste liidetavate võnkumiste sagedus  2l Ideaalne vedelik – puudub sisehõõrdumine. Atmosfäärirõhk mingil kõrgusel h on tingitud nende kehade massidega ning pöördvõrdeline erineb vähe(<<). Pulsseeriva amplituudiga l n n  seal asuvate gaasikihtide kaalust. Tähistame

Füüsika
10 allalaadimist
thumbnail
15
doc

Jäävusseadused

Konstantse jõu korral võrdub jõuimpulss lihtsalt kehale mõjuva resultantjõu ja mõjumisaja korrutisega. Saadud valemid (5.4) ja (5.5) on antud vektorkujul ja neid ei saa seetõttu ülesannete lahendamisel kasutada. Seega tuleb nad avaldada ka komponentkujul. Konstantse resultantjõu korral valem (5.4) esitub komponentides p x = p 0 x + Fres , x t . (5.6) Valemi (5.5) komponentkujule viimiseks kasutame asjaolu, et resultantjõu vektor avaldub Fres = i Fres , x + j Fres , y + k Fres , z . Vastavalt Newton-Leibnitzi valemile summa integraal võrdub integraalide summaga, järelikult võime integreerida kõiki liidetavaid eraldi. Algimpulssi p 0 lõppimpulssi p samuti komponentideks lahutades saame näiteks impulsi x-komponendi jaoks t p x = p 0 x + Fres , x dt . 0

Füüsika
238 allalaadimist
thumbnail
11
doc

Füüsika eksam

39. Sirgliikumise hetkkiirus ja kiirendus kiirus antud hetkel v=s/t kiirendus antud hetkel a=v/t Kiirendus näitab kuipalju kiirus muutub ajaühikus Kiirus näitab, kui palju muutub liikuva keha asukoht ruumis ajaühiku jooksul ehk kui suure teepikkuse läbib keha ajaühiku jooksul mööda oma trajektoori. 40. Ühtlaselt muutuv pöörlemise pöördenurga ja lõppkiiruse valem = t -nurkkiirus -pöördenurk = ot ± t2/2 Molekulaarkineetiline teooria. 41. Ideaalne gaas. Molekulaarkineetilise teooria põhivõrrand 1)gaasi molekulid on lõpmatu väikesed 2)põrked molekulide vahel abs. elastsed 3)nii hõre, et puuduvad molekulide vastastikmõjud. Võib Ep mitte arvestada. PV/T=const MKTPV Võrrandi tuletamisel vaadeldakse molekulide absoluutselt elastseid põrkeid vastu seina. MKTPV väidab, et gaasi rõhk p sõltub gaasimolekulide kontsentratsioonist n ja ühe molekuli keskmisest kineetilisest

Füüsika
393 allalaadimist
thumbnail
57
rtf

TEHNILINE TERMODÜNAAMIKA

mehaaniline kui ka soojuslik koosmõju. Termodünaamilist süsteemi, millel puudub soojusvahetus väliskeskkonnaga (ka siis, kui termodünaamilise süsteemi temperatuur erineb väliskeskkonna temperatuurist), nimetatakse s o o j u s l i k u l t i s o l e e r i t u d ehk a d i a b a a t i l i s e k s s ü s t e e mi k s. Adiabaatiliseks termodünaamiliseks süsteemiks on näiteks soojuslikult ideaalselt isoleeritud anumasse paigutatud gaas.Sellist süsteemi, mis väliskeskkonnast on eraldatud samaaegselt adiabaatiliste (soojuslikult isoleeritud) ja mehaaniliselt absoluutselt jäikade pindadega, nimetatakse s u l e t u d ehk i s o l e e r i t u d t e r m o ­d ü n a a m i l i s e k s s ü s t e e m i k s. Isoleeritud termodünaamilise süsteemi ja väliskeskkonna vahel puudub nii soojuslik kui ka mehaaniline koosmõju. 1.2. Termodünaamiline keha.

Termodünaamika
17 allalaadimist
thumbnail
2
doc

Mehaanika ja soojuse valemid

M NA N ­ molekulide arv, NA ­ Avogadro arv Aine kontsentratsioon N n N ­ molekulide arv, V ­ aine ruumala V Ideaalne gaas Ideaalseks nimetatakse gaasi, mille molekulide vastastikmõju on tähtsusetult väike. Gaasi temperatuur 3 E ­ molekulide kulgliikumise keskmine kineetiline energia E kT k ­ Boltzmanni konstant, T ­ gaasi absoluutne temperatuur 2 Ideaalse gaasi siseenergia

Mehaanika ja soojuse valemid
20 allalaadimist
thumbnail
34
docx

Füüsika eksami konspekt

Füsa eksami konspekt 1, Liikumise kirjeldamine Taustsüsteem on mingi kehaga seotud ruumiliste ja ajaliste koordinaatide süsteem. Kohavektor on vektor, mille alguspunkt ühtib koordinaatide alguspunktiga. Trajektoor on keha või ainepunkti teekond liikumisel ruumis või tasandil. Trajektoori saab korrektselt kasutada ainult punktmassi korral. Kiirus on vektoriaalne suurus, mis võrdub nihke ja selle sooritamiseks kulunud ajavahemiku suhtega (kiirusvektor on igas trajektoori punktis suunatud mööda trajektoori puutujat selles punktis). Kiirendus on kiiruse muutus ajaühikus. (Kiirendusvektor lahutub kiirenevalt liikuva

Füüsika
46 allalaadimist
thumbnail
26
doc

Tahke keha mehhaanika.

s v = (2.2) t või vektorina s v = . (2.3) t Viimase vektori pikkus erineb valemiga (2.2) määratud keskmisest kiirusest. Kui vaadelda järjest väiksemaid ajavahemikke ja vastavalt lühemaid kaarepikkusi (AC, AD,...) ja nihkevektoreid ( AC , AD ,...) siis see erinevus järjest väheneb, keskmise kiiruse vektor pöördub ja piiril, kui t 0 , langeb selle siht kokku trajektoori puutuja AE sihiga. Niisuguse piirväärtusena saadud vektorit nimetatakse hetkkiiruseks trajektoori vaadeldavas punktis: s ds v = lim = . (2.4) t 0 t dt

Füüsika
99 allalaadimist
thumbnail
21
doc

Soojustehnika küsimuste vastused

Universaalne gaasikonstant 7. Ideaalgaaside segud (gaasikomponendi, partsiaalrõhk, suhteline osamass, osamaht)(Daltoni seadus) Termodünaamikas uuritakse ka gaaside segude omadusi ja parameetreid, kuna praktikas ning soojusjõu seadmetes kasutatakse termodünaamilise kehana gaaside segusid. (Termodünaamikas vaadeldakse mehaanilisi segusid, gaaside vahel keemilise reaktsioone ei toimu). Iga gaas segus võtab oma alla alati kogu gaasi anuma mahu ja omandab segu temperatuuri. Segu maht V ja temperatuur T on samad. Rõhk aga võib olla erinevate gaaside puhul segus erinev. n p = p1 + p2 + p3 + + pn = pi , [ p0 ] Daltoni seadus (gaasisegude põhiseadus): i =1

Soojustehnika
400 allalaadimist
thumbnail
24
docx

Hüdraulika ja pneumaatika kodused ülesanded

Tauno Sõmmer Iseseisva töö ülesanded Kodutöö Õppeaines: Hüdro- ja pneumoseadmed Mehaanika teaduskond Õpperühm: MI-31 Juhendaja: Rein Soots Tallinn 2010 Ülesanne 1 (variant 4) Avaldada rõhk X mmHg paskalites, baarides ja megapaskalites, kui elavhõbeda tihedus on 13600 kg/m3. Antud: X=100 mmHg = 13600 kg/m3 Leida: X= ? Pa X= ? bar X= ? MPa 13600 kg/m3 elavhõbeda tihedus näitab, et tegu on normaaltingimustega. Teisendan ühikud: 1mmHg = 1 torr 1 torr= 133,3Pa 100 mmHg= 100 torr 100 torr= 100*133,3=13330 Pa 1 bar = 105 Pa 13330Pa= 13330/105 bar=0,1333 bar 1MPa= 106Pa 13330Pa=13330/106=0,01333 MPa Vastus: Juhul kui X on 100mmHg siis see on võrdne 13330 paskaliga, 0,1333 bariga ja 0,01333 megapaskaliga. Ülesanne 3 (variant 4) Vertikaalselt paiknev hüdrosilinder peab tõstma koormust massiga m kG. Milline peab olema koormust tõstva silindri minimaalne läbimõõt d m

Hüdraulika ja pneumaatika
283 allalaadimist
thumbnail
18
pdf

MOLEKULAARFÜÜSIKA ALUSED

Teisiti väljendades tähendab see seda, et gaasi rõhu ja temperatuuri jagatis on jääv suurus p = const T Sellest lähtudes võime oma alg- ja lõppoleku kohta kirjutada p1 p 2 = , T1 T2 millest lõpprõhk p1 T2 p2 = . T1 Arvutamine annab tulemuseks 150 243 p2 = ( ) kPa = 120 kPa. 303 Vastus: gaasi rõhk temperatuuril -30 0 C on 120 kPa. Näidisülesanne 9. Gaas asetseb kolviga suletud anumas. Gaasi algruumala on 15 L, algrõhk 2 atm ja algtemperatuur 27 0 C. Kui gaas surutakse kokku ruumalani 12 L ja tema rõhk tõuseb 3 atm-ni, siis milline on gaasi lõpptemperatuur? 10 Lahendus. Antud: Teeme joonise, mis kujutab algandmeid. Antud protsessi korral muutuvad nii p 1 = 2 atm rõhk, ruumala kui ka temperatuur. V 1 = 15 L T 1 = 300 K p 2 = 3 atm V 2 = 12 L T2 = ?

Füüsika
60 allalaadimist
thumbnail
15
pdf

Hüdraulika ja Pneumaatika

TALLINNA TEHNIKAKÕRGKOOL TALLINN COLLEGE OF ENGINEERING Kodused ülesanded Õppeaines: Hüdro- ja pneumoseadmed. Variant 4 Õpperühm: KMI 51/61 Üliõpilane: Margus Erin Kontrollis: Lektor Rein Soots Tallinn 2010 SISUKORD Ülesanne 2 ............................................................................................................................. 3 Ülesanne 3 ............................................................................................................................. 4 Ülesanne 4 ............................................................................................................................. 6 Ülesanne 6 ............................................................................................................................. 8 Ülesanne 8 ............................................................................................................................. 9 Üles

Hüdraulika
233 allalaadimist
thumbnail
6
pdf

Füüsikaline maailmapilt lahendusi

Ülesanded II Lahendusi 1. Aasta auto 1997 tiitli pälvinud Renault Megane Scenic`i võimsama mootoriga variant saavutab paigalseisust startides 9,7 sekundiga kiiruse 100 km/h. a) Kui suur on selle auto keskmine kiirendus? b) Kui pika tee võib auto läbida esimese 15 s vältel? t = 9,7 s 100 1000 lõppkiirus v1 = 100 km h = m s 27,8 m s 3600 algkiirus v0 = 0 t = 15s kiirendus a=? teepikkus s=? Lahendus. v1 - v0 27,8 - 0 a) Kiirendus a = = = 2,87 2,9 m s 2 t 9,7 at 2 b) Teepikkus ühtlaselt muutuva liikumise korral s = v0t + . Kui algkiirus v0 = 0 , siis 2 at 2 2,87 152 s= = 3,2 102 m . 2 2 Vastus: a) Kiirendus on 2,9 m/s2. b) Esimese 15 sekundi vältel läbib auto 3, 2 102

Füüsika
17 allalaadimist
thumbnail
66
docx

Füüsika I konspekt

kiirus väheneb. Seos teepikkuse ja kiiruse vahel avaldub: s=(v 2-v02)/2a. Vaba 2 langemine on ühtlaselt muutuva sirgliikumise erijuht, mille korral keha liigub maapinna suhtes ainult raskusjõu toimel. h=gt2/2. Maksimaalse tõusu kõrguse vertikaalsel ülesviskel saab leida valemist h=v0 2/2g. 7. KÕVERJOONELINE LIIKUMINE. KIIRUSE SUUND. NURKKIIRUS KUI VEKTOR JA SELLE SEOS JOONKIIRUSEGA. KIIRENDUS ÜHTLASEL RINGLIIKUMISEL. NORMAAL- JA TANGENTSIAALKIIRENDUS KÕVERJOONELISEL LIIKUMISEL Kõrverjooneline liikumine on punktmassi või jäiga keha või kehade süsteemi massikeskme liikumine, mille korral kiirusvektori siht muutub. Liikumine on kõverjooneline parajasti siis, kui esineb kiirendus, mille siht erineb trajektoori puutuja sihist. Kõverjooneline liikumine taandub ringjoonelisele.

Füüsika
72 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun