Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

Elektropneumaatika kodutöö - sarnased materjalid

elektropneumaatika
thumbnail
10
doc

Analüütilise geomeetria valemid

ANALÜÜTILISE GEOMEETRIA VALEMID 1. Vektori koordinaadid a = Xi +Yj + Zk = ( X ; Y ; Z ) 2. Vektori koordinaatide seos lõpp- ja alguspunktide koordinaatidega AB = ( x B ­ x A ; y B ­ y A ; z B ­ z A ) 3. Vektori pikkus a = X +Y +Z 2 2 2 X Y Z cos = ; cos = ; cos = 4. Vektori suuna koosinused a a a cos 2 + cos 2 + cos 2 = 1 5. Vektorite võrdsus a = b, ( X 1 = X 2 ; Y1 = Y2 ; Z 1 = Z 2 ) 6. Vektorite summa c = a + b, ( X 3 = X 1 + X 2 ; Y3 = Y1 + Y2 ; Z 3 = Z 1 + Z 2 ) 7. Vektori korrutamine skalaariga b = na, ( X 2 = nX 1 ; Y2 = nY1 ; Z 2 = nZ1 ) X 1 Y1 Z 1 8. Vektorite kollineaarsus a b,(

Analüütiline geomeetria
39 allalaadimist
thumbnail
10
doc

Analüütilise geomeetria valemid

ANALÜÜTILISE GEOMEETRIA VALEMID 1. Vektori koordinaadid a = Xi +Yj + Zk = ( X ; Y ; Z ) 2. Vektori koordinaatide seos lõpp- ja alguspunktide koordinaatidega AB = ( x B ­ x A ; y B ­ y A ; z B ­ z A ) 3. Vektori pikkus a = X +Y +Z 2 2 2 X Y Z cos = ; cos = ; cos = 4. Vektori suuna koosinused a a a cos 2 + cos 2 + cos 2 = 1 5. Vektorite võrdsus a = b, ( X 1 = X 2 ; Y1 = Y2 ; Z 1 = Z 2 ) 6. Vektorite summa c = a + b, ( X 3 = X 1 + X 2 ; Y3 = Y1 + Y2 ; Z 3 = Z 1 + Z 2 ) 7. Vektori korrutamine skalaariga b = na, ( X 2 = nX 1 ; Y2 = nY1 ; Z 2 = nZ1 ) X 1 Y1 Z 1 8. Vektorite kollineaarsus a b,(

Analüütiline geomeetria
140 allalaadimist
thumbnail
24
doc

ANALÜÜTILINE GEOMEETRIA RUUMIS, VEKTORID

ANALÜÜTILINE GEOMEETRIA RUUMIS, VEKTORID VEKTORI MÕISTE, MOODUL JA SUUND Neid suurusi, mida on võimalik iseloomustada ühe arvuga, nimetatakse skalaarseteks (temperatuur, mass, töö). Suurusi, mille iseloomustamiseks on vaja arvu ja suunda, nimetatakse vektoriaalseteks (jõud, kiirus, kiirendus). Definitsioon. (Geomeetriliseks) vektoriks nimetatakse suunatud sirglõiku, lõiku, millel tehakse vahet alguse ja lõpu vahel.   Kui vektori algus on punktis A ja lõpp punktis B, siis tähistatakse AB , a . Vektor on kindla sihi, suuna ja pikkusega lõik. Siht on teda kandva sirge siht. Suund on alguspunktist lõpp-punkti poole. Definitsioon. Vektori mooduliks nimetatakse tema pikkust, see on lõigu AB pikkust ja tähistatakse   AB  AB , a  a . Vektori moodul on skalaarne mittenegatiivne suurus. Definitsioon. Nullvektoriks nimetatakse vektorit, mille algus- ja lõpp-punkt langevad kok

Matemaatika
39 allalaadimist
thumbnail
14
ppt

Sirge tasandil

Sirge tasandil © T. Lepikult, 2010 Lõigu pikkus Punktide A(x1; y1) ja B(x2; y2) vaheline kaugus ehk neid ühendava lõigu pikkus d on leitav valemiga d = ( x2 - x1 ) 2 + ( y2 - y1 ) 2 . y Valemit saab põhjendada B Pythagorase teoreemiga. y2 d y2 - y1 y1 A x2 - x1 0 x1 x2 x Lõigu keskpunkt Punktide A(x1; y1) ja B(x2; y2) vahelise lõigu keskpunkti C koordinaadid on leitavad valemitega 1 1 x0 = ( x2 - x1 ) , y0 = ( y2 - y1 ) . 2 2 y B y2 y0 C y1 A 0 x1 x0 x2 x

Matemaatika
31 allalaadimist
thumbnail
24
rtf

Lineaaralgebra eksam

1. Kompleksarv kui reaalarvude paar. Tehted kompleksarvudega. Tehete omadused. Kompleksarvu algebraline kuju. Tuletatavad tehted ja nende omadused. Kompleksarvuks nimetatakse reaalarvude paari (x,y). C = {(x;y) | x, y R} Tehted kompleksarvudega: z1 = (x1; y1) C; z2 = (x2; y2) C 1. liitmine: z1 + z2 = (x1 + x2; y1 + y2) 2. korrutamine: z1 * z2 = (x1x2 - y1y2; x1y2 + x2y1) Kompleksarvudega tehete omadused 1. liitmine on kommutatiivne, st z1 + z2 = z2 + z1 z1, z2 C korral 2. liitmine on assotsiatiivne, st (z1 + z2) + z3 = z1 + (z2 + z3) z1, z2, z3 C korral 3. liitmise suhtes leidub nullelement (reaalarv 0, 0 + z = z + 0 = z z C korral), st leidub C, nii et z + = + z = z z korral; = (0; 0) = 0 4. igal kompleksarvul z = (x; y) = x + yi leidub (liitmise suhtes) vastandarv, st selline arv w C, et z + w = w + z = 0; w = -z 5. korrutamine on kommutatiivne, st z1z2 = z2z1 z1, z2 C korral 6. korrutamine on assotsiatiivne, st (z1z2)z3 = z1(z2z3) z1, z2, z3 C korral

Lineaaralgebra
199 allalaadimist
thumbnail
54
doc

Valemid ja mõisted

MATEMAATIKA TÄIENDÕPE VALEMID JA MÕISTED KOOSTANUD LEA PALLAS 1 2 SAATEKS Käesolev trükis sisaldab koolimatemaatika valemeid, lauseid, reegleid ja muid seoseid, mille tundmine on vajalik kõrgema matemaatika ülesannete lahendamisel. Kogumikus on ka mõned kõrgema matemaatika õppimisel vajalikud mõisted, mida koolimatemaatika kursuses ei käsitletud.. 3 KREEKA TÄHESTIK - alfa - nüü - beeta - ksii - gamma - omikron - delta - pii - epsilon - roo - dzeeta - sigma - eeta - tau - teeta - üpsilon - ioota - fii - kapa - hii - lambda - psii - müü - oomega

Matemaatika
1099 allalaadimist
thumbnail
108
doc

MATEMAATIKA TÄIENDÕPE: Valemid

MATEMAATIKA TÄIENDÕPE VALEMID JA MÕISTED KOOSTANUD LEA PALLAS 1 2 SAATEKS Käesolev trükis sisaldab koolimatemaatika valemeid, lauseid, reegleid ja muid seoseid, mille tundmine on vajalik kõrgema matemaatika ülesannete lahendamisel. Kogumikus on ka mõned kõrgema matemaatika õppimisel vajalikud mõisted, mida koolimatemaatika kursuses ei käsitletud.. 3 KREEKA TÄHESTIK Α α  alfa Ν ν  nüü Β β  beeta Ξ ξ  ksii Γ γ  gamma Ο ο  omikron Δ δ  delta Π π  pii Ε ε  epsilon Ρ ρ  roo Ζ ζ  dzeeta Σ σ  sigma Η η  eeta Τ τ  tau Θ θ  teeta Υ υ  üpsilon Ι ι  ioota Φ φ  fii Κ κ  kap

Algebra I
61 allalaadimist
thumbnail
2
docx

Sirged ja tasandid

Sirged ja tasandid Kordamine Sirge kanoonilised võrrandid: Antud on 2 sirge punkti A( x1 ; y1 ; z1 ) ja x - x1 = y - y1 = z - z1 B( x 2 ; y 2 ; z 2 ) : x 2 - x1 y 2 - y1 z 2 - z1 Antud on 1 sirge punkt A( x1 ; y1 ; z1 ) ja x - x1 y - y1 z - z1 = = sx sy sz s = (sx ; s y ;

Matemaatika
64 allalaadimist
thumbnail
1
doc

Sirged ja nendevahelised seosed

Sirge tõusunurgaks nimetatakse nurka (alfa), mis on x-telje positiivse suuna ja sirge vahel. Sirge tõusuks nimetatakse suurust tan(alfa). Sirge algordinaadiks nimetatakse ordinaadi väärtust, kus sirge lõikab y-telge. Sirge võrrand kahe puntki abil: x-x1 / x2-x1 = y-y1 / y2-y1 Sirge võrrand ühe punkti ja sihivektoriga: x-x1 / s1 = y-y1 / s2 Sirge võrrand punkti ja tõusuga: y-y1 = k(x-x1) Sirge võrrand tõusu ja algordinaadiga: y = kx + b Ühel sirgel on lõpmata palju sihivektoreid. Teame järgnevaid sirge määramise viise: kahe punkti abil, punkti ja sihivekotriga, punkti ja tõusuga, tõusu ja algordinaadiga. Sirge on omavahel risti kui nende tõusude korrutis on -1, s.t. k1 * k2 = -1. N: 12x ­ 3y = 0; 2x + 8y ­ 9 = 0 s1(3;12) s2(-8;2) s1*s2=3*(-8)+12*2=0 Sirge üldvõrrand: ax + by + c = 0 => s(prim) = (-b; a) Kahe sirge vastastikused asendid: s: a1x + b1y + c1 = 0 t: a2x + b2y + c2 = 0 I ühtivad: a1/a2=b1/b2=c1/c2 II paralleelsed: a1/a2=b1/b2

Matemaatika
21 allalaadimist
thumbnail
26
docx

Lineaaralgebra eksami kordamisküsimused vastused

1. Ristkoordinaadid- kui ruumis on antud ristkordinaadisüsteem, siis ruumi iga punkt P on üheselt määratud ristkordinaatidega x,y,z, kus x on punkti P ristprojektsioon absissteljele, y on punkti P ristprojektsioon ordinaattelele ja z on punkti P ristprojektsioon aplikaattelele P(x,y,z) 2. Kahe punkti vaheline kaugus- Kui P1(x1,y1,z1), P2(x2,y2,z2) on ruumi punktid siis kaugus d punktide P1 ja P2 vahel on määratud valemiga √ 2 2 d= ( x 2−x 1 ) + ( y 2− y 1 ) + ( z 2 + z 1) 2 3. Vektori mõiste-Vektor on suunatud lõik millel on kindel algus- ja lõpp-punkt. 4. Nullvektor-Vektorit, mille pikkus on null, nimetatakse nullvektoriks ja tähistatakse sümboliga . Nullvektori suund on määramata. 5. Ühikvektor- Kui vektori pikkus on 1 6. vektorite liitmine-rööpkülikureegel: Vektorite a ja b summaks nimetatakse niisugust vektorit c, mis väljub nend

Matemaatiline analüüs 1
124 allalaadimist
thumbnail
3
doc

Mat analüüs 2

4) - . . . . -.: 2, N . 4) . (x,y)S - .1: D . . - Rn . . . - . . . r ×r f(x,y)g(x,y), - . . . . . . . - yR 1)D - N= 1 2 . f ( x, y )dxdy g ( x, y r1 × r2 . . . - D=D(f) n2) y . . - 3) -

Matemaatiline analüüs 2
136 allalaadimist
thumbnail
4
doc

Lineaar algebra teooria kokkuvõte

Lineaarvõrrandsüsteem-nim. Võrrandisüsteemi kujul {a11x1+..+a1nxn=b1 ; am1x1+.. +amnxn=bm. Arve aij nim lvs kordajateks, arvud b1..bm on vabaliikmed ja x1..xn on tundmatud. Süsteemi võrrandite arv m ja tundmatute arv n on sõltumatud. Sellist võrrandisüsteemi nimetatakse lineaarseks võrrandisüsteemiks, sest otsitavad suurused x1.. xn esinevad ainult lineaarsetes tehetes, st neid on vaid liidetud ja skalaariga korrutatud. Def. Arvude järjendit c1.. cn nim lvs lahendiks, kui tundmatute asendamisel nende arvudega (loomulikus järjekorras, st x1 = c1.. xn = cn) on süsteemi kõik võrrandid rahuldatud. Võrrsüsteemi nim kooskõlaliseks, kui tal leidub vähemalt 1 lahend. Kui lahendid puuduvad, nim sõsteemi vasturääkivaks. Võrrsüs kõigi lahendite hulka nim võrrsüs lahendihulgaks e üldlahendiks. Igal lvs-l kas lahend puudub, on ühene lahend või on lõpmata palju lahendeid. Cramer. Def. Öeldakse, et lvs-i korral on tegemist Crameri peajuhuga, kui 1)tundmatute arv võrd

Lineaaralgebra
865 allalaadimist
thumbnail
246
pdf

Funktsiooni graafik I õpik

1 10. klass Viljandi Täiskasvanute Gümnaasium KORDAMINE: FUNKTSIOONI GRAAFIK I Joonistel on kuue funktsiooni graafikud. Tee kindlaks, missuguste funktsioonidega on tegemist. 1 2 3 © Allar Veelmaa 2014 2 10. klass Viljandi Täiskasvanute Gümnaasium KORDAMINE: FUNKTSIOONI GRAAFIK II © Allar Veelmaa 2014 3 10. klass Viljandi Täiskasvanute Gümnaasium REAALARVUDE PIIRKONNAD Kuna erinevates õpikutes kasutatakse reaalarvude piirkondade märkimiseks erinevaid tähistusi, siis oleks kasulik teada mõlemat varianti. Nimetus Tingimus Esimene

Matemaatika
79 allalaadimist
thumbnail
17
pdf

Detaili sisepinna omadused

66 Tugevusanalüüsi alused 5. DETAILI SISEPINNA OMADUSED 5. DETAILI SISEPINNA OMADUSED 5.1. Ristlõige kui varda tugevuse mõõt Tugevusanalüüsi oluline küsimus: Kas detaili ristlõike kuju ja "Jäme" varras on tugevam, kui "peenike" ehk mõõtmed on optimaalsed? varras milline "jämedus" on piisav? Eelnevast: Ristlõike vastupanuvõime sõltub varda koormamise viisist Ristlõike vastupanuvõime koormuste toimele on erinevate sisejõudude mõjudes erinev (Joon. 5.1) ning sõltub: · tõmbel, survel ja lõikel pindalast A, [m2]; · väändel polaar-inertsimomendist I0, [m4] ning üm

Materjaliõpetus
4 allalaadimist
thumbnail
17
pdf

Detaili sisepinna omadused

66 Tugevusanalüüsi alused 5. DETAILI SISEPINNA OMADUSED 5. DETAILI SISEPINNA OMADUSED 5.1. Ristlõige kui varda tugevuse mõõt Tugevusanalüüsi oluline küsimus: Kas detaili ristlõike kuju ja "Jäme" varras on tugevam, kui "peenike" ehk mõõtmed on optimaalsed? varras milline "jämedus" on piisav? Eelnevast: Ristlõike vastupanuvõime sõltub varda koormamise viisist Ristlõike vastupanuvõime koormuste toimele on erinevate sisejõudude mõjudes erinev (Joon. 5.1) ning sõltub: · tõmbel, survel ja lõikel pindalast A, [m2]; · väändel polaar-inertsimomendist I0, [m4] ning üm

Materjaliõpetus
6 allalaadimist
thumbnail
5
doc

algebra konspekt

Sirged ja tasandid Joonte ja pindade võrrandite mõiste Võrdust F(x,y,z)=0 nim pinna S võrrandiks antud koordinaatide süsteemis, kui selle pinna kõikide punktide koordinadid rahuldavad seda võrdust ja nende punktide koordinadid, mis ei asu sellel pinnal, ei rahulda seda võrdust. Sfäär on niisuguste punktide hulk, milliste kaugus keskpunktist on võrdne raadiusega r. Tähistades sfääri meelevaldse punkti M koordinadid (x,y,z) ning avaldades võrduse |OM| =r koordinatide kaudu. Võrdust (x-a)² + (y-b) ² + (z-c)² = r² nim sfääri võrrandiks vaadeldavas koordinaatide süsteemis. Kui pinna võrrand on esitatav kujul F(x,y,z)=0, kus F(x,y,z) on n-astme polünoom, siis nim pinda n-järku algebraliseks pinnaks. Algebralistest pindadest lihtsaim on esimest järku pind ehk tasand. Sfäär on teist järku pind, sest selle võrrandis esinevad tundmatud on teisel astmel.Võrdust F(x,y)=0 nim joone L võrrandiks antud koordinaatide süsteemis tasandil, kui teda rahuldavad joone L k�

Algebra ja Analüütiline...
131 allalaadimist
thumbnail
104
pdf

Konspekt

I. Determinandid 1 Determinandi m~ oiste 1.1 Idee selgitus Algul defineerime esimest j¨ arku determinandi, siis esimest j¨arku determinandi abil teist j¨ arku determinandi, seej¨arel teist j¨arku determinandi abil kolmandat j¨ arku detereminandi jne, n-j¨arku determinandi defineerime (n - 1)-j¨arku determinandi kaudu. Sel- list defineerimisviisi nimetatakse induktiivseks ja vastavat objekti induktiivseks konstruktsiooniks. Eelnevalt on soovitatav tutvuda maatriksi m~oistega (II.1.1). Kooloniga v~ordus A := B t¨ahendab j¨argnevas, et A on defineeri- tud B kaudu. Seda v~ordust kasutame ka samav¨ a¨arsete t¨ ahistuste sissetoomiseks. 1.2 Esimest j¨ arku determinant Arvu a R determinandi |a| ehk esimest j¨ arku determinandi de- fineerime valemiga |a| := det a := a. 1.3 N¨ aide | - 5| = -5

Lineaaralgebra
511 allalaadimist
thumbnail
40
doc

Keskkooli matemaatika raudvara

KESKKOOLI MATEMAATIKA RAUDVARA 1. osa Andres Haavasalu dikteeritud konspekti järgi koostanud Viljar Veidenberg. 2003. aasta 1 Sisukord Sisukord........................................................................................................................................2 Arvuhulgad............................................................................................................................... 5 Naturaalarvude hulk N..........................................................................................................5 Negatiivsete täisarvude hulk z ­...........................................................................................5 Täisarvude hulk Z.................................................................................................................5 Murdarvu

Matemaatika
1453 allalaadimist
thumbnail
15
doc

KODUTöö AINES "MASINATEHNIKA"

TALLINNA TEHNIKAÜLIKOOL MEHHATROONIKAINSTITUUT KODUTÖÖ AINES "MASINATEHNIKA" TIGUÜLEKANNE JA VÕLLIKOOSTU PROJEKTEERIMINE ÜLIÕPILANE: KOOD: JUHENDAJA: Igor Penkov TALLINN 2006 Sisukord 1. Mootori valik ................................................................................................... 3 2. Tiguülekanne arvutus ....................................................................................... 4 3. Võlli projektarvutus ......................................................................................... 7 4. Võlli kontrollarvutus ........................................................................................ 9 5. Liistu arvutus ................................................................................................... 10 6. Siduri valik ........................................................................

Masinatehnika
224 allalaadimist
thumbnail
3
doc

Matemaatika valemid

sin2 + cos2 = 1 tan = sin /cos 1+tan2 = 1/cos2 sin2 = 1 ­ cos2 sin = tan *cos cos2 = 1/tan2 +1 cos2 = 1 ­ sin2 cos = sin /tan cos2 ­ 1 = - sin2 cot = cos /sin cot =1/tan sin2 ­ 1 = - cos2 cos = cot *sin tan *cot =1 sin = cos /cot 1+cot2 = 1/sin2 sin = cos (90o ­ ) sin = vastas kaatet/hüpotenuus cos = sin (90o ­ ) cos = lähis kaatet/hüpotenuus tan = 1/tan (90o ­ ) tan = vastas kaatet/lähis kaatet cot =tan (90o ­ ) cot = lähis kaatet/vastas kaatet tan = cot (90o ­ ) Kolmnurga pindala Koosinusteoreem Siinusteoreem S=a*h/2 a2=b2+c2-2bc*cos a/sin=b/sin=c/sin=2R S=1/2a*b*

Matemaatika
1753 allalaadimist
thumbnail
1
doc

Geodeesia lab.töö nr.3

Ülesanne: 1) Tähista Eesti baaskaardil geodeetiline võrk 2) Määra oma kolmele punktile geodeetilised kordinaadid 3) Tähtista Eesti baaskaardil TM-võrk 4) Määra oma kolmele punktile tasapinnalised ristkoordinaadid 5) Arvuta koordinaatide järgi joonepikus 1-2, 2-3, 3-1 6) Arvuta joone mõõtmise suhteline viga (flub<1/100) 7) Konstrueeri eelmisele laboratoorsele tööle L-EST koordinaatvõrk 8) Määra veel kolmele nurgale koordinaadid L-EST süsteemis Lahendus: 2) ja 4) Punkt B L X Y 1 59°12'42" 26°23'3" 6565,7 635,8 2 59°13'41" 26°18'48" 6567,5 631,7 3 59°15'47" 26°13'16" 6571,4 626,45 B1= 59°12'+42"=59°12'42" 3,7cm=60" 2,6cm=x" x=42" L1=26°23'+3"=26°23'3" 1,9cm=60"

Geodeesia
117 allalaadimist
thumbnail
14
doc

Teooria vastused II

1) Mitmemõõtmelise ruumi ja selle punkti mõisted. Kaugus mitmemõõtmelises ruumis. Kauguse omadused. Parameetrilised jooned. · Mitmemõõteliseks ruumiks nimetakse hulka , mille elementideks on kõik reaalarvust koosnevad järjestatud süsteemid ( a1, a2, ..., an). · Mitmemõõtmelise ruumi punktiks nim mitmemõõtmelise ruumi ( a1, a2, ..., an) süsteemi A=( a1, a2, ..., an). · Kaugus mitmemõõelises ruumis. Kui A=( a1, a2, ..., an) ja B=( b1, b2, ..., bn) siis |AB|= (a1-b1)+ (a2-b2)+ ...+ (an-bn) · Kauguste omadused: A=B siis ja ainult siis, kui |AB|=0 |AB|=|BA| |AB| |AC|+|CB| · Parameetrilised jooned ruumis Rm. Olgu lõigul [T1, T2] antud m funktsiooni x1 = 1(t), x2 = 2(t), . . . , xm = m(t). Vaatleme nende funktsioonidevõrranditest moodustatud süsteemi x1 = 1(t)

Matemaatiline analüüs 2
335 allalaadimist
thumbnail
14
doc

Matemaatiline analüüs II Teooria

1) Mitmemõõtmelise ruumi ja selle punkti mõisted. Kaugus mitmemõõtmelises ruumis. Kauguse omadused. Parameetrilised jooned. · Mitmemõõteliseks ruumiks nimetakse hulka , mille elementideks on kõik reaalarvust koosnevad järjestatud süsteemid ( a1, a2, ..., an). · Mitmemõõtmelise ruumi punktiks nim mitmemõõtmelise ruumi ( a1, a2, ..., an) süsteemi A=( a1, a2, ..., an). · Kaugus mitmemõõelises ruumis. Kui A=( a1, a2, ..., an) ja B=( b1, b2, ..., bn) siis |AB|= (a1-b1)+ (a2-b2)+ ...+ (an-bn) · Kauguste omadused: A=B siis ja ainult siis, kui |AB|=0 |AB|=|BA| |AB| |AC|+|CB| · Parameetrilised jooned ruumis Rm. Olgu lõigul [T1, T2] antud m funktsiooni x1 = 1(t), x2 = 2(t), . . . , xm = m(t). Vaatleme nende funktsioonidevõrranditest moodustatud süsteemi x1 = 1(t)

Matemaatiline analüüs 2
184 allalaadimist
thumbnail
8
pdf

Determinandid gümnaasiumiõpikus

DETERMINANDI MÕISTE. KAHEREALISE DETERMINANDI Avaldanud esimesest võrrandist x-i ja asendanud saadud tulemuse teise võr- KASUTAMINE VÕRRANDISÜSTEEMIDE LAHENDAMISEL randisse, saame c1 b1 y Paljude sisult erinevate probleemide lahendamine viib ühe ja sama seaduse a1 x b1 y c1 x , kui a1 0. järgi koostatud avaldisteni. Sel juhul on otstarbekas uurida nende avaldiste a1 üldisi omadusi. c b y° a2 ¡¡ 1 1 ±± b2 y c2 a1 korrutame võrrandi pooli a1-ga Üheks selliseks av

Matemaatika
39 allalaadimist
thumbnail
6
docx

Tiguülekande arvutus

MHE0042 MASINAELEMENDID II Kodutöö nr. 3 Variant nr. Töö nimetus: Tiguülekande arvutus A -4 B -2 Üliõpilane (matrikli nr ja nimi) Rühm: Juhendaja: A.Sivitski Töö esitatud: Töö parandada: Arvestatud: 22.05.2014 Tiguülekanne Antud: Teo materjal ­ teras 15Cr3, karastatud HRC 46...50 (ReH = 750 MPa, Rm = 1500 MPa) Tiguratta materjal: hammasvöö ­ tinapronks G-SnBz12 (Rm = 290 MPa, lubatav kontaktpinge [ ]H = 220 MPa, lubatav paindepinge [ ]F = 70 MPa) rumm ­ teras E295 (ReH = 295 MPa, Rm = 490 MPa) Ülekandearv u = 94, pöördemoment tigurattal T2 = 250 Nm. A 0 1 2 3 4 5 6 7 8 9 u 38 47 66 76 94 38 47

Masinelemendid II
6 allalaadimist
thumbnail
8
doc

Kõrgema matemaatika kordamisküsimused ja vastused

Kõrgem matemaatika 1. Maatriksi mõiste, järk, tähistused, liigid. Maatriks ­ ristkülikukujuline arvudega tabel, milles on m-rida ja n-veergu. Tähistused: (maatriksit tähistatakse suure tähega) a11 a12 ... a1n a 21 a 22 ... a2n i =1,2,..., m = A( aij ), ... ... ... ... j =1,2,..., n a m1 am2 ... a mn Maatriksi järk ­ tähistab maatriksi môôtmeid; A on m*n järku maatriks. Maatriksi liigid: 1) Ruutmaatriks: m=n; 2) Diagonaalmaatriks: a11, a22, amm - peadiagonaal (diagonaalil ei ole 0; muud elemendid 0-d); 3) Ühikmaatriks (diagonaalmaatriksi erijuht): a11 = a22 ... = amm = 1; (Täh. E); 4) Nullmaatriks: aij = 0, iga i ja j korral; (Täh ). 2. Tehted maatriksitega (korrutamine arvuga, liitmine, lahutamine, korrutamine). 1) Korrutamine arvuga: A=(aij), kR; kA=C; C=(cij), kus cij = kaij. 2) Maatriksite liitmine: (m*n) ­ ma. A, (p*q) ­ m

Matemaatika
241 allalaadimist
thumbnail
5
pdf

Pneumaatika ja elektrompneumaatika kodutööd

Pneumaatika koduülesanne: 1. Kirjutada välja masina töötsükli sammud, nt.: S1 AND S2 -> Z1+ S3 OR S4 -> Z1- 2. Joonistada vastav samm-diagramm. 3. Joonistada masina pneumoskeem. ,,Press" · Kahepoolse toimega silindrit (Z1) kasutatakse ühe detaili teise sisse pressimiseks. · Kahepoolse toimega silindri (Z1) kolb teeb pluss-suunalise liikumise vajutades surunupule (S0). Seejärel teeb silindri (Z1) kolb automaatselt miinus-suunalise liikumise, kui detail on sissepressitud teatud (reguleeritava) jõuga. · Kolvi liikumiskiirus peab olema reguleeritav mõlemas suunas. · Silindri kolb saab teha pluss-suunalise liikumise peale surunupu (S0) vajutamist ainult juhul, kui silinder on algselt miinus-asendis. ,,Liimimismasin" · Kahepoolse toimega silindrit (Z1) kasutatakse detailide kokkusurumiseks liimimisel. · Liimiga kaetud detailid asetatakse masinasse. Kahepoolse toimega silindri (Z1) kolb teeb pluss-suunalise liikumise vajutades surunupule (S0) ning pressib detailid kokku. �

Pneumoautomaatika
73 allalaadimist
thumbnail
19
doc

Matemaatika valemid.

1. Reaalarvud ja avaldised a, kui a 0 · Arvu absoluutväärtus ­ a = - a, kui a < 0 · Astme mõiste ja omadused a 0 = 1, kui a 0 a1 = a a n = a a a a, kui n N 2 1 a-k = , kui a 0 ja k Z või ak kui a > 0 ja k Q m n a m , kui a > 0, m Z ja n N a = n 2 0, kui a = 0, m N 1 ja n N1

Matemaatika
807 allalaadimist
thumbnail
15
docx

Masinaelemendid

Demos Pulk TEHNILINE ÜLESANNE 1 LINTKONVEIERI AJAM Õppeaines: Masinaelemendid Transporditeaduskond; Autotehnika Juhendaja: M. Tiidemann Õpperühm: AT42a Tallinn 2013 Leian ajami tööea: Lh = La·365·Ka·24 · Köp 8 Köp = 24 = 0,33 Lh = 3 · 365 · 0,85 · 24 · 0,33 = 7372 h Valime optimisteguri: Võtame keskmise kvaliteediga valmistamis- ja ekspluatatsioonitingimused: g = 0,5 Määran lintkonveieri nõutava võimsuse: Lindkonveieri nõutava võimsuse Ptm saan kui korrutan lindi veojõu ja lindi kiiruse: Ptm = F·v = 1,5· 103· 2,1 = 3,15 kW Määran ajami kasuteguri: = kü · lü · s · vl2 · ll2 · tm kus kü = kinnise ülekande kasutegur lü = lahtise ü

Masinaelemendid
162 allalaadimist
thumbnail
9
doc

Lineaaralgebra

Lineaaralgebra I kontrolltöö teooriaküsimused 1. Kompleksarvu mõiste, imaginaarühik, kaaskompleksarv, kompleksarvude võrdsus ja nulliga võrdumise tingimus. Kompleksarvu moodul, argument ja trigonomeetriline kuju. Kompleksarvuks z nimetatakse avaldist z = a + bi , (1) kus a ja b on reaalarvud ja i on niinimetatud imaginaarühik, mis on määratud võrdustega i = -1 või i 2 = -1 ; Kaht kompleksarvu z = a + bi ja z = a - bi , mis erinevad ainult imaginaarosa märgi poolest, nimetatakse kaaskompleksarvudeks. Kokkuleppe põhjal 1) kaht kompleksarvu z1 = a1 + b1i ja z2 = a2 + b2i loetakse võrdseteks ( z1 = z2 ) , kui a1 = a2 ja b1 = b2 , s.t. kui nende reaalosad on võrdsed ja imaginaarosad on võrdsed; 2) kompleksarv võrdub nulliga, s.o.

Lineaaralgebra
920 allalaadimist
thumbnail
2
docx

Analüütilise geomeetria teoreemide tõestusi

1.Vektorruumis on ainult üks nullelement tõestus: Olgu V vektorruum 2 omadus ütleb, et leidub . Olgu meil vektorruumis 1 ja2 vektorruumid. Vastavalt 2 saame seosed x+ 1 =x, 1 +x =x iga xV, y+ 2 =y, 2+y=y iga yV. Valime teises seoses x= 2 ja kolmandad seoses y= 1 Saame 1+ 2= 2 ja 1 +2= 1 oleme saanud 1=1 +2 =2 , et 1 ja 2 olid V nullelemendid, siis on kõik V nullelemendid omavahel võrdsed, st. Saab olla vaid üks nullelement. 2.Sirgete kimp, mis sisaldab teineteisest erinevaid sirgeid üldvõrranditega s: A1x1+A2x2+A3=0; t: B1x1+B2x2+B3=0; koosneb parajasti nendest sirgetest, mille üldvõrrand avaldub kujul (A1x1+A2x2+A3)+(B1x1+B2x2+B3)=0; kus ja on vabalt valitud reaalarvud, mis ei ole korraga nullid. Tõestus: 1) On vaja näidata, et uus võrrand kirjeldab alati antud kimpu kuuluvat sirget: Olgu P(p1,p2) antud kibu keskpunkt, st Ps ja Pt, mistõttu P koordinaadid peavad rahuldama mõlemat võrradit- A1P1+A2P2+A3=0 ja B1P1+B2P2+B3=0. Olgu ,R, siis (A1P1+A2P2+A3)+(B1P1+B2P2+B3)

Geomeetria
18 allalaadimist
thumbnail
2
doc

Vektorid, valemid

VEKTOR Punktid A(x1; y1) ja B(x2; y2) Vektori koordinaadid AB = ( x2 - x1 ; y 2 - y1 ) Vektori pikkus AB = ( x2 -x1 ) 2 +( y2 - y1 ) 2 Vektorid a = ( a1; a2 ) ja b = ( b1;b2 ) Vektorite liitmine a + b = ( a1 + b1 ; a 2 + b2 ) Vektorite lahutamine a - b = ( a1 - b1 ; a 2 - b2 ) Vektori korrutamine arvuga k a = ( k a1; k a2 ) Vektori pikkus a = a12 + a22 Võrdsed vektorid a = b a1 = b1 ja a 2 = b2 Kollineaarsed vektorid a a b b = b 1 2 a 1 2 Ristuvad vektorid a b a b = 0 a b a1 b1 + a 2 b2 = 0 a b Vektorite vaheline nurk: cos = a b

Matemaatika
95 allalaadimist
thumbnail
2
docx

Vektorite töö

Vektorid. 10. klass Kontrolltöö I variant 1. A(-3;-5) , B(1;-1) ja C (-6;2) . Leidke a) Lõigu AB keskpunkt D ( ; ) b) AB, AC , BC , CD AB , AC , BC , CD c) d) kolmnurga ABC ümbermõõt ja pindala. 2. P(8,5;-1) ja PR = (-2;3) . Leidke R ( ; ). 1 a= i-2 j 3. a ja b on samasihilised. 2 ja b = m i + 3 j . Leidke m väärtus. 4. u = (3;-2) , v = (-1;1) . Leidke

Matemaatika
48 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun