Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Elektriajamite konspekt eksamiks (0)

5 VÄGA HEA
Punktid
Vasakule Paremale
Elektriajamite konspekt eksamiks #1 Elektriajamite konspekt eksamiks #2 Elektriajamite konspekt eksamiks #3 Elektriajamite konspekt eksamiks #4 Elektriajamite konspekt eksamiks #5 Elektriajamite konspekt eksamiks #6 Elektriajamite konspekt eksamiks #7 Elektriajamite konspekt eksamiks #8 Elektriajamite konspekt eksamiks #9 Elektriajamite konspekt eksamiks #10 Elektriajamite konspekt eksamiks #11 Elektriajamite konspekt eksamiks #12 Elektriajamite konspekt eksamiks #13 Elektriajamite konspekt eksamiks #14
Punktid 50 punkti Autor soovib selle materjali allalaadimise eest saada 50 punkti.
Leheküljed ~ 14 lehte Lehekülgede arv dokumendis
Aeg2014-04-04 Kuupäev, millal dokument üles laeti
Allalaadimisi 69 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor Mihkel Mmm Õppematerjali autor
Kõik Elektriajamite põhikursuse põhiteemad konspekteeritud kokkuvõtlikult eksamiks õppimiseks.

Sarnased õppematerjalid

thumbnail
13
pdf

Elektrotehnika eksamiküsimused

Reaktiivenergiat Wr, juhul kui koormus on sümmeetriline, saab määrata kahe ühefaasilise arvesti abil. Energia Wr leidmiseks tuleb arvestite näitude vahe korrutada 3. 10. Elektrimasina mõiste, teetähiseid ajaloost, areng. Seadmeid, mis on määratud mehhaanilise energia muundamiseks elektrienergiaks või vastupidi nim. ele ktrimasinateks. Kuni XIX sajandi lõpuni valitses tööstuses ajamimootorina aurumasin, mille kõrvale ilmus sajandi lõpus auruturbiin. Elektriajam sai alguse esimestest elektrimootoritest. 1834. a. konstrueeris M. H. Jacobi kasutuskõlbliku alalisvoolumootori, mida ta hiljem kasutas Neeval paadimootorina. Tööstuselektriajamite arengus sai määravaks kolmefaasilise asünkroonmootori loomine 1889. a. M. O. Dolivo-Dobrovolski poolt. Tööstuselektriajamite arengus oli oluliseks tähiseks üksikajami kasutuselevõtt 20-ndail aastail, mille tulemusena

Elektrotehnika
thumbnail
42
docx

Elektrotehnika eksami kordamisküsimused

vahelduvpingeregulaatoreid või vahelduvvoolulüliteid. Kiiruse reguleerimine pooluspaaride arvu muutmisega on kasutatav ajamites, kus ei nõuta kiiruse sujuvat reguleerimist. Kiiruse reguleerimine võrgupinge sageduse muutmisega. Sel juhul muutuvad vääratuslibistus ja -moment. Mootori lubatud moment muutub sageduse muutumisel, lubatud võimsus on konstantne. Võrgupinge sageduse suurenemisel väheneb lubatud moment vähem kui vääratusmoment, seega väheneb ka mootori ülekoormatavus. 28. Elektriajami dünaamika (põhivõrrand). Elektriajami kiirenduse ja aeglustuse tingimustes võivad elektrimootoris ja töömasinas tekkida dünaamilised jõud ja momendid, mis on mitmekordselt suuremad staatilistest väärtustest. Agregaadi tööd dünaamilises olukorras iseloomustab elektriajami põhivõrrand: 29. Valgustustehnilised mõõtühikud. Valgusvoog, mida tähistatakse tähega Φ ja mõõdetakse luumenites (lm)

Elektrotehnika1
thumbnail
3
pdf

Elektrotehnika

alalisvoolu mootorist lihtsam ja odavam. Transistoride kõrval kasutatakse välja lülitatavaid või enda muutuvkaod suuremad püsivkadudest. Sellepärast selline mootor töötab madalama kasuteguriga lühiajalises kustutusega türistore. Inverterite ja sagedusmuundurite juhtimiseks kasutatakse digitaal- ja vektorjuhtimist. talitluses, võrreldes kestva talitlusega. Lühiajalises talitluses on seepärast otstarbekas kasutada 32. Elektriajami dünaamika põhivõrrand. Elektriajami kiirenduse ja aeglustuse tingimustes võivad erimootoreid, mitte aga kestva talitluse mootoreid. Lühiajalise töö tegelik kestus ei lange alati kokku elektrimootoris ja töömasinas tekkida dünaamilised jõud ja momendid, mis on mitmekordselt suuremad standardse töötamiskestusega. Sel juhul arvutatakse tegelikud kaod ümber kataloogis antud mootori staatilistest väärtustest

Elektrimaterjalid
thumbnail
162
pdf

Täiturmehanismid, ajamid, mootorid

.................................................................................... 10 2.4. Näide ................................................................................................................................. 11 2.5. Täiturmehhanismide valikukriteeriumid ........................................................................... 11 3. Üldprintsiibid...................................................................................................................... 13 3.1. Elektriajami mõiste ........................................................................................................... 13 3.2. Alalisvool .......................................................................................................................... 13 3.3. Vahelduvvool .................................................................................................................... 15 3.4. Mittelineaarsed elemendid vahelduvvooluahelas ..................................................

Energia ja keskkond
thumbnail
31
doc

ELEKTRIAJAMITE ÜLESANDED

6. ELEKTRIAJAMITE ÜLESANDED Tootmises kasutatakse töömasinate käitamiseks rõhuvas enamuses elektriajameid. Ka pneumo- ja hüdroajamid saavad oma energia ikka elektrimootoritega käitatavatelt kompressoritelt ja hüdropumpadelt. Elektriajam koosneb elektrimootorist ja juhtimissüsteemist, mõnikord on vajalik veel muundur ja ülekanne. Elektriajamite kursuse põhieesmärk on valida võimsuse poolest otstarbekas elektrimootor, arvestades ka kiiruse reguleerimise vajadust ja võimalikult head kasutegurit. Järgnevad ülesanded käsitlevad selle valikuprotsessi erinevaid külgi. 6.1. Rööpergutusmootori mehaaniliste tunnusjoonte arvutus Ülesanne 6.1 Arvutada ja joonestada rööpergutusmootorile loomulik ja reostaattunnusjoon. Mootori nimivõimsus Pn = 20 kW, nimipinge Un = 220 V, ankruvool Ia = 105 A, nimi-

Elektriajamid
thumbnail
14
docx

Asuenkroonmootori tööpõhimõte

See tähendab, et kuigi mootor pöörleb ühes suunas, peab talle vastu mõjuma pidurdusmoment. Koormuse langetamisel muundatakse mehaaniline energia elektriliseks. Lühidalt, mootori generaatoritalitlust võivad ajamis põhjustada alljärgnevad tingimused. Mootorit käitab töömasin (näiteks auruturbiin, sisepõlemismootor) st kiiruse suurenemisel üle sünkroonkiiruse arendab mootor töömasinat pidurdavat generaatormomenti. Mootorit pidurdatakse rekuperatiivpidurdusega st ajamit peatatakse konstantse momendiga. Joonis 2.15. Elektriajami momendi-kiiruse neli kvadranti [21]. Lihtsamad ajamid töötavad tavaliselt I kvadrandis (mootoritalituses), mõnedel ajamitel on pöörlemissuund muutumatu, kuid muutub momendi suund (nt kiirendamisel ja pidurdamisel). Samuti esineb olukordi, kus elektriajam töötab muutumatu suunaga momendiga, aga muutub mootori pöörlemissuund (nt koormuse tõstmisel ja langetamisel). Kui elektriajam on varustatud vastava

Tehnoloogia
thumbnail
17
doc

Elektriajamite üldkursus materjal eksamiks

AAV 0030 elektriajamite üldkursus 5AP 6 4-2-0 E S 1. ELEKTRIAJAMI mõiste Elektriajam on elektromehhaaniline süsteem, mis koosneb elektrimootorist (või mootoritest), muundurist, ülekandemehhanismist ja juhtseadmest ning ette nähtud töömasina ja selle abimehhanismide liikumapanemiseks (käitamiseks). 2. ELEKTRIAJAMI struktuuriskeem 3. ELEKTRIAJAMI liikumise põhivõrrand pöörleval liikumisel Tm ­ Ts = J(d/dt)+(/2)*(dJ/dt) d/dt= dt=d/ Tm ­ Ts = J(d/dt)+(2/2)*(dJ/d) Võrrandi parem pool on dünaamiline moment Tm ­ Ts = Td 4. Elektriajami liikumise põhivõrrand sirgjoonelisel liikumisel Fm ­ Fs = m(dv/dt)+(v2/2)*(dm/ds) Fm ­ liikumapanev (motoorne jõud Fs ­ takistusjõud s ­ läbitud tee 5. Staatiliste momentide ja jõudude taandamine

Elektriõpetus
thumbnail
10
docx

Elektrotehnika referaat - Harjadeta elektrimootor

rootori pöörlemist. Kuna samm-mootor on numbriliselt juhitav, siis sobib ta ideaalselt kokku diskreetsete juhtimissüsteemidega, näiteks mikroprotsessoriga. Igale impulsile vastab teatud pöördenurk , n impulsile aga pöördenurk = n· . Siit järeldub, et samm-mootorit võib kasutada positsioneerimisel avatud juhtimisahelaga, st tagasisideta süsteemides. Samm- mootori eeliseks on asjaolu, et puudub tagasisideanduri vajadus ajami positsioneerimisel. Positsioneerimistäpsuse suurendamiseks konstrueeritakse mootorid suurema pooluste arvuga. Kuna samm-mootorit juhitakse järjestikuste impulssidega, siis võib madalatel pööretel olla samm-mootori liikumine katkendlik.Samm-mootorid on rentaablid võimsuseni kuni ~1 kW, neid toodetakse ka lineaarmootorite kujul. Samm-mootori ühe takti samm ehk sammunurk , =(360°)/(N_phmZ) kus N_ph on pooluste arv faasi kohta, m faaside arv ning Z hammaste arv. Samm-mootor

Elektrotehnika




Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun