Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Eksponentvõrrand (9)

2 HALB
Punktid

Esitatud küsimused

  • Milliste x väärtuste korral on rahuldatud võrrand x2x2-x1?

Lõik failist


Eksponentvõrrand 11. klassile
Ülesanne
Milliste x väärtuste korral on rahuldatud võrrand  (x+2)x2-x=1?
Lahendus:
Alustame selle võrrandi lahendamist analüütiliselt.
  • Teame, et aste võrdub ühega, kui astendaja on null. Seega saame, et
    x2-x=0;
    x (x-1)=0;
    x1=0;
    x2=1.
    Siit saime kaks lahendit.
  • Teame ka, et arvu 1 astendades mistahes reaalarvuga, saame alati ühe. Seega võib võrrandil olla lahendeid , kui astme alus võrdub ühega.
    x+2=1;
    x3=-1.
  • Veel teame, et kui negatiivset arvu astendada paarisarvulise astendajaga, siis saame positiivse arvu. Järelikult, kui arvu -1 astendada paarisarvulise astendajaga, saame ühe. Võrdsustame astme aluse -1-ga, saame
    x+2=-1;
    x4=-3.
    Nüüd peame veel kontrollima, kas siis, kui  x=-3  on astendaja paarisarv .
    (-3)2-(-3)=9+3=12.
    Seega ka lahend  x4=-3  rahuldab võrrandit.
Kontrollime nüüd lahendeid graafiliselt ja vaatame, kas sel võrrandil võib olla veel lahendeid. Joonestame funktsioonide
y =(x+2)x2-x,
y =1
graafikud ja leiame nende lõikepunktid, mis ongi võrrandi (x+2)x2-x=1 lahenditeks.
Siit graafikult näeme, et tegelikult pole funktsioon  y =(x+2)x2-x  määratud reaalarvude hulgal kui  x
Eksponentvõrrand #1 Eksponentvõrrand #2
Punktid 50 punkti Autor soovib selle materjali allalaadimise eest saada 50 punkti.
Leheküljed ~ 2 lehte Lehekülgede arv dokumendis
Aeg2008-06-11 Kuupäev, millal dokument üles laeti
Allalaadimisi 383 laadimist Kokku alla laetud
Kommentaarid 9 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor totukene Õppematerjali autor
Eksponentvõrrand 11. klassile

Sarnased õppematerjalid

thumbnail
17
docx

VÕRRANDID (mõisted)

VÕRRANDID Võrrand on muutujaid sisaldav võrdus, milles üks või mitu muutujat loetakse tundmatuks (otsitavaks). Tundmatu väärtust, mille korral võrrand osutub samasuseks (tõeseks arvvõrduseks), nimetatakse võrrandi lahendiks. Võrrandil võib olla üks või mitu lahendit, kuid neid võib olla ka lõpmata palju või mitte ühtegi. Lahendada võrrand tähendab leida tundmatu kõik need väärtused, mis rahuldavad võrrandit (st tundmatu asendamisel lahendiga muutub võrrand samasuseks). Võrrandi lahendamisel püütakse võrrandit teisendada nii, et iga uus võrrand oleks eelmisega samaväärne. Lubatud teisendused (võrrandi põhiomadused) on järgmised: 1) võrrandi pooli võib vahetada; 2) võrrandi mõlemale poolele võib liita või mõlemast poolest lahutada ühe ja sama arvu või muutujat sisaldava avaldise (mis omab mõtet võrrandi kogu määramis- piirkonnas), see annab sisuliselt teisenduse, mida tuntakse kui võrrandi liikmete teisele poole

Matemaatika
thumbnail
8
pdf

Kompleksarvud gümnaasiumiõpikus

Arvu a nimetatakse kompleksarvu a + ib reaalosaks ja arvu bi selle imaginaarosaks. KOMPLEKSARVUD Kui a = 0, siis on tegemist imaginaararvuga bi, kui b = 0, siis saame arvu a + 0·i, mis on reaalarv a. Kui a = b = 0, siis siis saame tulemuseks arvu 0. KOMPLEKSARVU MÕISTE. TEHTED KOMPLEKSARVUDEGA Kaks kompleksarvu on omavahel võrdsed parajasti siis, kui nende reaalosad ja 1. Kompleksarvu mõiste imaginaarosad on vastavalt võrdsed: a + ib = c + id

Matemaatika
thumbnail
40
doc

Keskkooli matemaatika raudvara

KESKKOOLI MATEMAATIKA RAUDVARA 1. osa Andres Haavasalu dikteeritud konspekti järgi koostanud Viljar Veidenberg. 2003. aasta 1 Sisukord Sisukord........................................................................................................................................2 Arvuhulgad............................................................................................................................... 5 Naturaalarvude hulk N..........................................................................................................5 Negatiivsete täisarvude hulk z ­...........................................................................................5 Täisarvude hulk Z.................................................................................................................5 Murdarvu

Matemaatika
thumbnail
6
doc

Reaalarvud. Võrrandid

MA1 - Reaalarvud. Võrrandid 1. Teemad Arvuhulgad N, Z, Q ja R, nende omadused. Reaalarvude piirkonnad arvteljel. Reaalarvu absoluutväärtus. Protsentülesanded. Astme mõiste üldistamine: täisarvulise ja ratsionaalarvulise astendajaga aste. N- es juur. Tehted astmete ja juurtega. Ratsionaal- ja irratsionaalavaldiste lihtsustamine. Irratsionaalsusest vabanemine. Lineaar-, ruut-, murd- ja juurvõrrandid. Võrrandite koostamine. Lihtsamate tekstülesannete lahendamine. 2. Tarkuseterad 2.1 Arvuhulgad Loendamisel kasutatavad arvud Arv 0 Kas 0N? Naturaalarvud N Järjestatav, vähim arv 1, lõpmatu Liitmine, korrutamine Jäägiga jagamine, algarv, SÜT, VÜK Nat. arvude vastandarvud Täisarvud Z Järjestatav,

Matemaatika
thumbnail
9
doc

Põhivara 7. klass

Põhivara 7. klass Protsendi mõiste: Ühte sajandikku osa mingist kogumist, tervikust nim. protsendiks (%). Jagatise väljendamine protsentides: Tihti on vaja teada, mitu % moodustab üks arv teisest. Kahe arvu jagatise väljendamiseks protsentides leiame selle jagatise esmalt kümnendmurruna ning korrutame siis sajaga. Näide: Arv 3 arvust 4 moodustab? 3 : 4 = 0,75 0,75 * 100 = 75% Tekstülesannete lahendamine % abil: Metsapäeval oli kavas istutada 2400 puud. Õpilased ületasid ülesande 16% võrra. Mitu puud istutati? Antud ülesannet saab lahendada kahel viisil. võimalus: 1% on 2400 : 100 = 24 16% on 16 * 24 = 384 16% 2400-st on 384 Kuna plaan ületati 16% võrra, mis vastab 384 puule, siis istutati 2400 + 384 = 2784 puud. võimalus: Mitu puud on 16% ? 2400 puud on 100% x puud on 16% x = 2400 * 16/100 = 384 Mitu puud istutati? 2400 + 384 = 2784

Matemaatika
thumbnail
14
pdf

Võrratused

Tartu Ülikool Teaduskool VÕRRATUSED Metoodiline juhend TÜ Teaduskooli õpilastele Koostanud Hilja Afanasjeva Jüri Afanasjev Tartu 2003 Juhendmaterjal on jätkuks TÜ Teaduskooli I kursusel läbitöötatud brosüürile E. Tamme "Algebraliste võrrandite lahendamisest". Vaadeldakse kõrgema astme võrratuste lahendamist intervallmeetodiga, absoluutväärtusi sisaldavaid võrratusi ja juurvõrratusi. Õppematerjali koostamisel kasutatud kirjandus: Abel, E. jt Aritmeetika ja algebra. Tartu, 1984 Gabovits, J. Võrratused. Tartu, 1970 Jürimäe, E., Velsker, K. Matemaatika käsiraamat IX - XI klassile. 2. tr. Tallinn, 1984 Litvinenko, V. N. jt Praktikum po reseniju matematitseskih zadats. Moskva, 1984 (vene keeles). 2 VÕRRATUSED

Matemaatika
thumbnail
10
doc

X klassi matemaatika lühikonspekt

X klassi matemaatika lühikonspekt (I periood) Arvuhulgad Naturaalarvudeks nimetatakse arve N={1; 2; 3; … ; n-1; n; n+1; …} Selles hulgas leidub esimene arv ja iga arvu korral sellele vahetult järgnev arv, kuid ei ole viimast arvu — niisugust naturaalarvu, mis oleks kõigist suurem. Naturaalarvude hulk on kinnine liitmise ja korrutamise suhtes, kuid mitte lahutamise ja jagamise suhtes. Liitmis- ja korrutamistehetel on hulgas N järgmised omadused: 1. Iga a, b  N korral a  b  b  a . Liitmis kommutatiivsus. 2. Iga a, b  N korral a  b  b  a . Korrutamise kommutatiivsus. 3. Iga a, b, c  N korral a   b  c    a  b   c . Liitmise assotsiatiivsus. 4. Iga a, b, c  N korral a   b  c    a  b   c . Korrutamise assotsiatiivsus. 5. Iga a, b, c  N korral a   b  c   a  b  a  c

Matemaatika
thumbnail
5
doc

X klassi matemaatika lühikonspekt

X klassi matemaatika lühikonspekt (I periood) Arvuhulgad Naturaalarvudeks nimetatakse arve N={1; 2; 3; … ; n-1; n; n+1; …} Selles hulgas leidub esimene arv ja iga arvu korral sellele vahetult järgnev arv, kuid ei ole viimast arvu — niisugust naturaalarvu, mis oleks kõigist suurem. Naturaalarvude hulk on kinnine liitmise ja korrutamise suhtes, kuid mitte lahutamise ja jagamise suhtes. Liitmis- ja korrutamistehetel on hulgas N järgmised omadused: 1. Iga a, b  N korral a  b  b  a . Liitmis kommutatiivsus. 2. Iga a, b  N korral a  b  b  a . Korrutamise kommutatiivsus. 3. Iga a, b, c  N korral a   b  c    a  b   c . Liitmise assotsiatiivsus. 4. Iga a, b, c  N korral a   b  c    a  b   c . Korrutamise assotsiatiivsus. 5. Iga a, b, c  N korral a   b  c   a  b  a 

Matemaatika




Meedia

Kommentaarid (9)

cyclop_robocop profiilipilt
cyclop_robocop: no sellest küll abi ei olnud.
13:26 25-01-2009
GetsuB profiilipilt
GetsuB: Halvasti koostatud
10:39 22-09-2012
Teku profiilipilt
Teku: Hea materjal !
13:06 16-02-2011



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun