Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Eksam (1)

5 VÄGA HEA
Punktid

Esitatud küsimused

  • Millised laused on iged?
Eksam #1 Eksam #2
Punktid 50 punkti Autor soovib selle materjali allalaadimise eest saada 50 punkti.
Leheküljed ~ 2 lehte Lehekülgede arv dokumendis
Aeg2011-11-22 Kuupäev, millal dokument üles laeti
Allalaadimisi 135 laadimist Kokku alla laetud
Kommentaarid 1 arvamus Teiste kasutajate poolt lisatud kommentaarid
Autor estersirg Õppematerjali autor
Ülesanded ja mitte teooria

Sarnased õppematerjalid

thumbnail
18
pdf

Lineaarsed võrrandi süsteemid

Lineaarsed võrrandisüsteemid Lineaarne võrrand Definitsioon Lineaarse võrrandi all mõistetakse võrrandit kujul a1 x1 + a2 x2 + ... + an xn = b, (1) kus a1 , ... , an ja b on fikseeritud (antud) arvud ning x1 , ... , xn on tundmatud. http://www.hot.ee/habib/MindReader.htm Arvu b nimetatakse vaadeldava võrrandi vabaliikmeks, arve a1 , ... , an aga tema kordajateks. Näide Võrrandis 5 x + 3 y - 2 z = -4 on vabaliikmeks arv ­4, kordajateks arvud 5, 3 ja ­2 ning tundmatud on tähistatud tähtedega x, y ja z. Lineaarse võrrandi lahend Definitsioon Lineaarse võrrandi (1) lahendiks nimetatakse sellist tundmatute x1 , ... , xn väärtuste komplekti c1 , ... , cn , R, mis asendamisel võrrandi (1) vasakusse poolde muudavad selle samasuseks: a1 c1 + a2 c2 + ... + an cn b. Näide Võrrandi 5 x + 3 y - 2 z = -4 üheks lahendiks on x = 1, y = -1 ja z = 3, kuna antud tun

Matemaatika
thumbnail
48
doc

Lineaaralgebra täielik konspekt

Lineaaralgebra elemendid. M.Latõnina 1. MAATRIKSID 1.1. Üldmõisted Definitsioon 1. Maatriksiks nimetatakse riskülikujulist arvuliste elementidega tabelit, mis sisaldab n rida ja m veergu : Lühidalt maatriksit võib tähistada erinevate sulgudega (või kahekordsete püstjoontega): A = (aij ) = [aij ] = aij , (1.1) kus i = 1,...,n on rea number, j = 1,...,m on veeru number. Arve aij nimetatakse maatriksi elementideks. Nii et esimene alumine indeks näitab, mitmendas reas asub element , ja teine alumine indeks - mitmendas veerus asub element. Maatriksi suurust saab väljendada valemiga: ridade arv x veergude arv. Antud maatriks (1.1) on suurusega n x m ja seda saab kirjutada järgmiselt : An x m või dim A = n x m (dimensioon ­ suurus).

Kõrgem matemaatika
thumbnail
104
pdf

Konspekt

I. Determinandid 1 Determinandi m~ oiste 1.1 Idee selgitus Algul defineerime esimest j¨ arku determinandi, siis esimest j¨arku determinandi abil teist j¨ arku determinandi, seej¨arel teist j¨arku determinandi abil kolmandat j¨ arku detereminandi jne, n-j¨arku determinandi defineerime (n - 1)-j¨arku determinandi kaudu. Sel- list defineerimisviisi nimetatakse induktiivseks ja vastavat objekti induktiivseks konstruktsiooniks. Eelnevalt on soovitatav tutvuda maatriksi m~oistega (II.1.1). Kooloniga v~ordus A := B t¨ahendab j¨argnevas, et A on defineeri- tud B kaudu. Seda v~ordust kasutame ka samav¨ a¨arsete t¨ ahistuste sissetoomiseks. 1.2 Esimest j¨ arku determinant Arvu a R determinandi |a| ehk esimest j¨ arku determinandi de- fineerime valemiga |a| := det a := a. 1.3 N¨ aide | - 5| = -5

Lineaaralgebra
thumbnail
57
rtf

Maatriksid

1. MAATRIKSID 1.1. Üldmõisted Definitsioon 1. Maatriksiks nimetatakse riskülikujulist arvuliste elementidega tabelit, mis sisaldab n rida ja m veergu : Lühidalt maatriksit võib tähistada erinevate sulgudega (või kahekordsete püstjoontega): [ ] a = aij A = (aij ) = ij , (1.1) kus i = 1,...,n on rea number, j = 1,...,m on veeru number. Arve aij nimetatakse maatriksi elementideks. Nii et esimene alumine indeks näitab, mitmendas reas asub element , ja teine alumine indeks - mitmendas veerus asub element. Maatriksi suurust saab väljendada valemiga: ridade arv x veergude arv. Antud maatriks (1.1) on suurusega n x m ja seda saab kirjutada järgmiselt : An x m või dim A = n x m (dimensioon ­ suurus). 3 -

Matemaatika
thumbnail
8
pdf

Determinandid gümnaasiumiõpikus

DETERMINANDI MÕISTE. KAHEREALISE DETERMINANDI Avaldanud esimesest võrrandist x-i ja asendanud saadud tulemuse teise võr- KASUTAMINE VÕRRANDISÜSTEEMIDE LAHENDAMISEL randisse, saame c1 b1 y Paljude sisult erinevate probleemide lahendamine viib ühe ja sama seaduse a1 x b1 y c1 x , kui a1 0. järgi koostatud avaldisteni. Sel juhul on otstarbekas uurida nende avaldiste a1 üldisi omadusi. c b y° a2 ¡¡ 1 1 ±± b2 y c2 a1 korrutame võrrandi pooli a1-ga Üheks selliseks av

Matemaatika
thumbnail
60
doc

Matemaatiline analüüs I kollokvium

HULGATEOORIA PÕHIMÕISTEID HULK - algmõiste, intuitiivse definitsiooni järgi objektide kogum. George Cantor (1845-1918) - saksa matemaatik, hulgateooria rajaja. Hulgad jaotuvad lõpmatuteks ja lõplikeks. Meie kursuses käsitletakse lõplikke hulki, mõnikord ka lõpmatuid loenduvaid hulki. Hulgateoreetilised operatsioonid  Hulkade ühend A B = { x  ( x  A) V ( x  B ) }  Hulkade ühisosa (lõige) A B = { x  ( x  A) & ( x  B )  Hulga täiend A = { x  ( x  I ) & ( x  A ) }, kus I on nn. universaalhulk.  Hulkade vahe A\ B = { x  ( x  A) & ( x  B ) }  Hulkade sümmeetriline vahe A  B = { x  (( x  A ) & ( x  B )) V (( x  A ) & ( x  B )) } Hulga A astmehulgaks 2A nimetatakse hulga A kõigi alamhulkade hulka. Hulgateoreetiliste operatsioonide omadused  Kommutatiivsusseadused A B = B   A  B = B   Assotsiatiivsusseadused A ( B  C ) = ( A B )  C A ( B  C ) = ( A B )

Matemaatika
thumbnail
142
pdf

Matemaatilise analüüsi konspekt TTÜ's

Matemaatiline anal¨ uu¨s I Jaan Janno ii Sisukord 1 Funktsioonid ja nendega seotud m~ oisted 1 1.1 Reaalarvud ja Arvtelg. Absoluutv¨a¨artuse m~oiste. Reaalarvudest koosnevad hulgad. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 J¨a¨avad ja muutuvad suurused. Funktsiooni m~oiste ja esitusviisid. 3 1.3 Funktsioonide liigid. Konstantne funktsioon. Astme-, eksponent- ja trigonomeetrilised funktsioonid. . . . . . . . . . . . . . . . . . 6 1.4 P¨o¨ordfunktsiooni m~oiste. Logaritmfunktsioon. Arkusfunktsioonid. 8 1.5 Tehted funktsioonidega. Elementaarfunktsioon. Pol¨ unoom ja ratsionaalfunktsioon. . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.6 Ilmutatud ja ilmutamata funktsioonid. Parameetrilisel kujul an- tud jooned ja funktsioonid. . . . . . . . . . . . . . . . . . . . . . 19 1.7 H¨uperboolsed trigonomeetrilised funktsioonid. . . . . . . . .

Matemaatiline analüüs
thumbnail
142
pdf

Matemaatiline analüüs I

Matemaatiline anal¨ uu¨s I Jaan Janno ii Sisukord 1 Funktsioonid ja nendega seotud m~ oisted 1 1.1 Reaalarvud ja Arvtelg. Absoluutv¨a¨artuse m~oiste. Reaalarvudest koosnevad hulgad. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 J¨a¨ avad ja muutuvad suurused. Funktsiooni m~oiste ja esitusviisid. 3 1.3 Funktsioonide liigid. Konstantne funktsioon. Astme-, eksponent- ja trigonomeetrilised funktsioonid. . . . . . . . . . . . . . . . . . 6 1.4 P¨o¨ ordfunktsiooni m~oiste. Logaritmfunktsioon. Arkusfunktsioonid. 8 1.5 Tehted funktsioonidega. Elementaarfunktsioon. Pol¨ unoom ja ratsionaalfunktsioon. . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.6 Ilmutatud ja ilmutamata funktsioonid. Parameetrilisel kujul an- tud jooned ja funktsioonid. . . . . . . . . . . . . . . . . . . . . . 19 1.7 H¨uperboolsed trigonomeetrilised funktsio

Matemaatika




Kommentaarid (1)

grazu profiilipilt
grazu: aitäh !
12:58 04-01-2013



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun