Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
Ega pea pole prügikast! Tõsta enda õppeedukust ja õpi targalt. Telli VIP ja lae alla päris inimeste tehtu õppematerjale LOE EDASI Sulge

Arvutid - konspekt eksamipiletitest - sarnased materjalid

sisend, triger, protsessor, katkestus, järjestik, väljund, loendur, trigeri, riistvara, sisendit, ekraan, kahend, edastus, takt, printer, ping, skeemid, signaal, loogika, käsk, operatsioon, andmeedastus, mälud, erand, analoog, tehnoloogia, ketta, transistor, summaator, register, edasta, katkestuse, multipleksor, vahemälu, takti, põhimälu, plokk
thumbnail
142
pdf

Arvutid eksamipiletid joonistega

Pilet 1 1. Trigerid. 2. Konveier protsessoris ja mälus. 3. Suvapöördusmälud. Trigerid (Flip-Flops) kuuluvad järjestiskeemide hulka sest neil on olemas mälu omadus, see tähendab väljundi väärtus sõltub peale sisendite väärtuse antud ajahetkel ka eelnevast väljundiväärtus-test. Triger on elementaarne mäluelement, mis võimaldab säilitada infot üks bit. Esitades trigerit tõeväärtustabeli või funktsiooni kaudu, tuleb sisse tuua aja parameeter. Triger on kahe stabiilse olekuga element. Tavaliselt trigeril on kaks väljunidit: Joonis: SR-TRIGER (set-resest) ühe ja kahetaktiline, antud on asünkroonne, R=S=1 on keelatud. Töötab: RS; Q(t), 00–>Q(t-1) , 01= 1, 10= 0, 11=-- Asünkroonse trigeri puhul muutub väljundi väärtus sisendite väärtuste muutuste järgi. Potentsiaaliga sünkroniseeritav SR : Sünkrosisendiga C määratakse, millal lülitub triger uude olekusse. NB

Arvutid
31 allalaadimist
thumbnail
16
docx

TTÜ Arvutid eksamiküsimused

kus igas harus genereeritakse juhtsignaalid, mis on vajalikud konkreetse käsu täitmiseks. Protsessorise loetakse käsud ja andmed, mällu kirjutatakse resultaate. Käsu täitmise e. Von Neumanni tsükkel (fetch ­ decode ­ execute) 1. Käsukoodi laadimine 2. Käsuloenduri modifitseerimine (pc = pc + 1) 3. Käsukoodi dekodeerimine 4. Käivitatakse käsutäitmise mikroprogramm 5. Resultaadi salvestamine registrisse. Käsu täitmiseks peab protsessor: 1. Pöörduma mälu poole 2. Lugema sealt käsukoodi 3. Dekodeerima selle 4. Tegema vastavaid loogilisi otsuseid vastavalt käsukoodile 5. Väljastama juhtsignaali 6. Leidma uue käsu ning salvestama selle käsuregistrisse. Protsessori üldstruktuur (sulgude sees sama) Käsuloendur (PC) ­ käsuloendur hoiab endas järgmisena täitmisele mineva käsu aadressi. Käsuregister (IR) ­ käsuregistrisse salvestatakse PC-st tulev käsuinfo (aadress). Hetkel käimas olev käsk

Arvutid
26 allalaadimist
thumbnail
13
docx

Orgaanilise keemia areng XIX sajandil

kallis. Kuna ALUl mälu puudub, kasutatakse lippude registrit eelneva tulemuse salvestamiseks. Käsuloendur on vajalik, et teada, millise käsu täitmise juures parasjagu ollakse. Käsuloendur säilitab järgmisena täitmisele tuleva käsu aadressi. Vajalik näiteks katkestuse korral ja alamprogrammi poole pöördumisel, et fikseerida tagasipöörde aadress järgmise käsu juurde. Käsuregister- kui protsessor väljastab käsuloendurist aadressi ja loeb selle järgi mälust käsukoodi, siis salvestatakse see käsuregistrisse. Käsuregistri väljundisse on ühendatud dekooder, mille väljundis on iga sisendkoodi korral aktiivne vaid üks väljund. Käsudekoodril läheb aktiivseks üks väljunditest, mis näitab, millise käsu kood loeti protsessorisse. Kõik käsud sisaldavad käsukoodi, kuid käsus võib olla ka aadress või andmed.

Orgaaniline keemia
5 allalaadimist
thumbnail
33
docx

Arvutid 2017 Kospekt

1. Trigerid. Trigerid kuuluvad järestikskeemide hulka, sest neil on mälu omadus. Väljundi väärtus sõltub peale sisendite väärtuste ka väljundi väärtusest eelnevatel hetkedel. Triger on mäluelement, mis säilitab ühe bitist informatsiooni. Trigeril on kaks stabiilset olekut. Olekuks nimetatakse trigeri väljundi väärtust antud ajahetkel. Tavaliselt on trigeril kaks väljundit: otseväljund ja tema eitus. Trigeri tüübid: 1) SR-triger (Set Reset) ­ Asünkroonse trigeri puhul pole sünkrosisendit millega ümberlülitumise aega juhtida, seega väljundi väärtus muutub sisendi väärtuste muutuste järgi. S R Qt 0 0 Qt-1 01 0 10 1 11 - Kui S = R = 1, siis on otseväljud ja inversioonväljund ühesuguse väärtusega Q = ^Q, kuna kahendväärtuse otseväärtuse ja eitus ei saa olla võrdsed, siis loetakse seda keelatud väärtuseks. Loogikafunktsioon Qt = S + ^R Qt-1

Arvutid
26 allalaadimist
thumbnail
25
doc

Arvutid I eksamipiletid ja vastused

.....................................................................................................8 2. Käsuformaadid - 0, 1, 2, 3 ja 1,5 aadressiga arvutid. ................................................................9 3. Andmeedastuse juhtimine(bus arbitation): süsteemid katkestustega ja ilma, prioriteedid. ......9 4. PILET.............................................................................................................................................9 1. Summaator: järjestik, paralleel ja kiire ülekanne. .....................................................................9 2. Optilised mäluseadmed............................................................................................................ 10 3. Analoog ja digitaal info. Analoog liides (DAC,ADC) ............................................................10 5. PILET..................................................................................................................................

Arvutid i
938 allalaadimist
thumbnail
17
pdf

Arvutid I eksamipiletid 2013

Pilet 1 1. Trigerid. 2. Konveier protsessoris ja mälus. 3. Suvapöördusmälud. Trigerid (Flip-Flops)kuuluvad järjestiskeemide hulka sest neil on olemas mälu omadus, see tähendab väljundi väärtus sõltub peale sisendite väärtuse antud ajahetkel ka eelnevast väljundiväärtusest. Triger on elementaarne mäluelement, mis võimaldab säilitada infot üks bit. + 1) asünkroonsed - salvestatakse infi vahetult sisenditesse antud signaalidega. 2) sünkroonsed - see on võimalik ainult sünkroimpulsi olemasolul. RS (reset-set) , ühe ja kahetaktiline, antud on asünkroonne, R=S=1 on keelatud. Töötab: RS; Q(t), 00­>Q(t-1) , 01= 1, 10= 0, 11=-- . t R S Q t-1 0 0 Q ei muutu

Arvutid i
377 allalaadimist
thumbnail
54
docx

Arvutid konspekt

 Kombinatsioonskeemid ja järjestiskeemid. Kõikides arvutites kasutatavad loogikaskeemid kuuluvad kahte suurde klassi. 3. võimalust ei ole. Kombinatsioonskeemid on sellised loogikaelementidest koostatud skeemid, millel ei ole mälu omadusi. Nad kirjelduvad loogikafunktsioonidega, milles ei ole aja parameetrit. Teades hetke sisendit, saame arvutada samal hetkel väljundite väärtused vastava loogikafunktsiooni abil. Ei ole oluline, millised olid sisendite väärtused varasematel hetkedel. Kui väljundeid on mitu, siis on iga väljundi jaoks eraldi funktsioon. Järjestikskeemid on sellised loogikaelementidest koostatud skeemid, millel on mälu omadused. See tähendab, et kõnealusel hetkel on väljundite väärtuste määramiseks vaja teada väljundite väärtusi ka eelnevatel hetkedel. Sel juhul

Arvuti
39 allalaadimist
thumbnail
26
docx

IAF0041 eksamipiletite vastused: mälud ja trigerid

Kahe stabiilse olekuga loogikalülitus (1 või 0). Olek vastab väljundsignaalile. Sõltuvalt sisendsignaalist säilitab endise oleku või muudab seda hüppeliselt. Tavaliselt 2 väljundit: otsene O ja invertne Õ. Tööpõhimõtte järgi jaotatakse: Seadesisenditega ehk SR-trigerid Loendussisenditega ehk T-trigerid Andmesisenditega ehk D-trigerid Universaalsisenditega ehk JK-trigerid SÜNKROONNE TRIGER (flip-flop) ­ oleku reguleerimine sisendite baasil toimub vaid taktiimpulsi mõjul. ASÜNKROONNE TRIGER (latch) ­ info salvestatakse vahetult sisenditesse antud signaalide põhjal. Sõltuvalt tööpõhimõttest ja ehitusest liigitatakse ühe- või kahe-taktilisteks. Ühetaktiline: puuduseks, et ei võimalda samaaegselt infot vastu võtta ja edastada. Kahetaktiline: master-slave, kokku ühendatud kaks trigerit, et

Arvutid
17 allalaadimist
thumbnail
40
pdf

Eksami konspekt

PILET 1 TRIGERID Triger on mäluelement, mis säilitab 1 biti infot. Trigeril on 2 stabiilset olekut, mis vastavad loogikalülitustele 0 ja 1. Trigeri olek vastab tema väljundsignaali väärtusele mingil ajahetkel. Sõltuvalt sisendsignaalist olek kas säilib või muutub vastupidiseks. Väljundeid on üldjuhul 2 QjaQ. Kasutatakse mäluelementidena registrites, loendurites jne. Informatsiooni salvestusviisi järgi jagunevad kaheks: asünkroonsed ­ infot salvestatakse vahetult sisendisse antud signaalidega sünkroonsed ­ võimalik vaid sünkroimpulsi(clock) olemasolul

Arvutid i
139 allalaadimist
thumbnail
38
docx

Arvutid I Eksami pletid

1)Loendurid Loenduriteks - Impulsside loendamiseks ette nähtud loogikalülitus. Loendur on register, millesse salvestatud arv sisenditele antud signaali mõjul muutub ühe võrra. Loendureid kasutatakse nii automaatikaseadmetes, kui ka arvutustehnikas. Loenduril on sünkroonsisend ja m väljundit. Iga impulsi saabumisel sünkrosisendisse muudab üks või mitu väljundit oma väärtust. Teadtud arvu väljundkombinatsioonide järel kogu väljundkombinatsioonide jada kordub. Loenduri sisse tulevad impulsid ning väljundiks on 0,1 kombinatsioonid

Arvutid
129 allalaadimist
thumbnail
23
docx

IAF0041 Arvutid I - eksamikonspekt

Arvutid I eksamiküsmused ja vastused Eksamikonspekt 2011 IABB22 1. Loendurid[4] 2. Pinumälu (stack) realiseerimine ja kasutamine protsessoris[4] 3. Trigerid[3] 4. Dekooder[3] 5. Käsuformaadid - 0, 1, 2, 3 ja 1,5 aadressiga arvutid[3] 6. Summaator: järjestik, paralleel ja kiire ülekanne[3] 7. Andmevahetusprotokollid: sünkroonne, asünkroonne jne[3] 8. Registrid[2] 9.Mikroskeemide valmistamise tehnoloogiad[2] 10. Konveier protsessoris ja mälus[2] 11. Suvapöördusmälud[2] 12. Adresseerimise viisid[2] 13. Kuvarid[2] 14. Andmeedastuse juhtimine(bus arbitation): süsteemid katkestustega ja ilma, prioriteedid[2] 15. Multipleksor, demultipleksor[2] 16. Spetsiaalse riistvara realiseerimine[2] 17

Arvutid i
250 allalaadimist
thumbnail
86
pdf

ARVUTID I (IAF 0041)

operatsioonautomaat (125-132) ..................................................................................................... 5 5. Konveier protsessoris ja mälus (163-167 mälu + 184 cpu) .................................................... 8 6. Vahemälu (Cache) (171-182) ................................................................................................ 10 7. Protsessori töö kiirendamine: superskalaarne protsessor, konveier, SIMD, spekulatiivne täitmine, mitmetuumalised protsessorid (183-186) ..................................................................... 12 8. Arvuti mälu hierarhia (188-189) ........................................................................................... 15 9. Arvuti mälude klassifikatsioon (190-191) ............................................................................ 16 10. Pooljuhtmälud (191-197) .............................................................

Informaatika
17 allalaadimist
thumbnail
25
docx

ARVUTITE EKSAM piletid

ARVUTITE EKSAM PILETID PILET 1. Käsu täitmine protsessoris. Teisisõnu fetch-decode-execute tsükkel. Protsessor viib käsu täide iga käsu väikeste sammude seeriana. Umbkaudu on need sammud järgmised: järgmise käsu haaramine käsuregistrisse -> käsuloenduri muutmine nii, et ta viitaks järgmisele käsule -> teha kindlaks käsu tüüp -> juhul, kui käsk kasutab sõna, mis on juba mälus, siis teha kindlaks, kus see mälus asub -> vajaduse korral haarata see sõna ja viia see protsessori registrisse -> täita antud käsk -> naaseda esimese sammu juurde ja alustada järgmise käsu täitmist.

Arvutid
39 allalaadimist
thumbnail
100
docx

Arvutite eksam

29. Käsuformaadid : 0, 1, 2, 3 ja 1,5 aadressiga arvutid. 30. Arvuti mälu klassifikatsioon. Doris - 30-32 31. Siinide juhtimine - katkestusteta süsteem, katkestustega süsteem ja prioriteedid. 32. Pinumälu (Stack) - realiseerimine ja kasutamine TAUSTAVÄRVIGA KÜSIMUSED ON VASTAMATA!!! Hannes 34 - 36 33. Püsimälud : ROM, PROM, EPROM, EEPROM ja Flash. 34. Siirete ennustamine (Branch prediction): vajadus, meetodid. 35. Spetsialse riistvara realiseerimine. VASTUSED 1. Protsessori struktuur : käsuloendur, käsuregister, käsu dekooder, juhtautomaat ja operatsioonautomaat. Protsessor · Protsessori üldstruktuur Protsessori ja mälu osa andmetöötluses: Arvutis säilitatakse programme (käskude jada) ja andmeid mälus kahendkujul (0-de ja 1-de jada). Põhiliselt on kasutusel von Neumanni tüüpi arvuti arhitektuur, kus nii käsud kui ka andmed asuvad samas mälus

Arvutid
45 allalaadimist
thumbnail
29
doc

Arvutid I avalikele eksamipiletitele antud vastused.

Trigerid Triger on mäluelement mis säilitab 1bit informatsiooni. Qt = S + -R * Qt-1Trigeril on 2 stabiilset olekut 1 ja 0. Olekuks nimetatakse trigeri väljundi väärtust antud ajakhetkel. Sõltuvalt sisendsignaalist muudab triger oleku vastupidiseks või säilitab endise oleku. Sünkroniseerimine ­ kui trigeriga on ühendatud lubav sisend, mille kõrgel väärtusel loetakse sisse uued sisendid, toimuvad üleminekud, madalal olekul aga on triger passiivne, säilitades oma endise oleku. Vastasel juhul võiksid erinevate elementide ja kombinatsioonide erinevad viited väjundit mõjutada. Esifront vs tagafront. Ühe- vs kahetaktiline triger (MS-triger) ­ master ja slave pool ... kahetaktilisse on kokku ühendatud 2 trigerit, et sünkroniseerimisel nulli haaramist elimineerida... slave lülitub esimesel taktil, master järgneval SR ­ Set-Reset Triger ... seadesisendiga triger T-triger ­ Toggle triger .

Arvutid i
64 allalaadimist
thumbnail
38
docx

Arvutid kordamisküsimused

1. Trigerid Triger on mäluelement, mis säilitab 1 biti informatsiooni. Triger on kahe stabiilse olekuga loogikalülitus (1 või 0). Trigeri olek vastab tema väljundsignaalile. Sõltuvalt sisendsignaalist säilitab triger endise oleku või muudab seda hüppeliselt (seega sültub trigeri väljund ka selle eelmisest väljundist). Trigeril on tavaliselt 2 väljundit: otsene Q ja invertne Q . Tööpõhimõtte järgi jaotatakse trigerid seadesisenditega ehk SR- trigeriteks, loendussisenditega e. T-

Arvutid i
134 allalaadimist
thumbnail
20
doc

Küsimused ja vastused Arvutid I eksamiks

dioodloogika: kokku ühendatud n-p pooljuhid lüliti avatud, kui vool kulgeb noole suunas. Väljundvoolu hergnevustegur ­ dioodide arv loogikaskeemis piiratud, kuna vastasel juhul võib ühte dioodi hakata läbima liiga suur vool ... summa eelnenud dioodidest * I ... vana, ei kasutata TTL ­ Transistor-Transistor Loogika: bipolaarne transistor ... npn = emitter-base- collector ja pnp = emitter-base-collector ... viimane on negatiivse loogika näide (invertor) kolme olekuga väljund: Enabled+x1+x2. Kui E=0, f=? väiksema energitarbega & kiirem kui eelmine STTL ­ Shotky TTL ... lisatud Shotky diood, kiire lülitumisega IIL ­ Integrated Injection Logics ... suhteliselt madalam töökiirus, suurim elemenditihedus.. TTL modifikatsioon, milles kahe transistori pnpnp osad kokku ühendet ECL ­ Emitter-Coupled Logic ... väga kiire bipolaartransistoritel põhinev loogika Pooljuhtide tehnoloogia: MOS ­ Metal Oxide Semiconductor

Arvutid i
704 allalaadimist
thumbnail
20
odt

Arvutid I eksamiküsimuste vastused

dioodloogika: kokku ühendatud n-p pooljuhid lüliti avatud, kui vool kulgeb noole suunas. Väljundvoolu hergnevustegur ­ dioodide arv loogikaskeemis piiratud, kuna vastasel juhul võib ühte dioodi hakata läbima liiga suur vool ... summa eelnenud dioodidest * I ... vana, ei kasutata TTL ­ Transistor-Transistor Loogika: bipolaarne transistor ... npn = emitter-base- collector ja pnp = emitter-base-collector ... viimane on negatiivse loogika näide (invertor) kolme olekuga väljund: Enabled+x1+x2. Kui E=0, f=? väiksema energitarbega & kiirem kui eelmine STTL ­ Shotky TTL ... lisatud Shotky diood, kiire lülitumisega IIL ­ Integrated Injection Logics ... suhteliselt madalam töökiirus, suurim elemenditihedus.. TTL modifikatsioon, milles kahe transistori pnpnp osad kokku ühendet ECL ­ Emitter-Coupled Logic ... väga kiire bipolaartransistoritel põhinev loogika Pooljuhtide tehnoloogia: MOS ­ Metal Oxide Semiconductor

Informaatika
32 allalaadimist
thumbnail
74
pdf

Arvutid 1 eksam

EKSAMIKÜSIMUSED 2005 Sisukord Sisukord ..................................................................................................................................................... 1 Arvuti riistvara matemaatilised alused ...................................................................................................... 4 Kahendsüsteem .............................................................................................................................. 4 Boole funktsioonid ja nende esitus................................................................................................ 4 Diskreetne aeg ............................................................

Arvutid i
587 allalaadimist
thumbnail
76
doc

Arvutid I eksami materjal

EKSAMIKÜSIMUSED 2005 Sisukord Sisukord............................................................................................................................................1 Arvuti riistvara matemaatilised alused ............................................................................................ 4 Kahendsüsteem............................................................................................................................4 Boole funktsioonid ja nende esitus..............................................................................................4 Diskreetne aeg..........................................................................................

Arvutid i
476 allalaadimist
thumbnail
16
doc

Arvutid I - Konspekt

Järelikult on TTL- st kiirem. * ECL- (Emitter Coupled Logic)- bipolaartransistoridel põhinev, kiiretoimeline. Väga kiire. * MOS (Metal Oxyde Silicon)- unipolaarne tehnoloogia * NMOS (n- channel MOS)- n juhtivusega MOS- loogika. * PMOS- P juhtivusega MOS loogika * CMOS (Complementary MOS) Kasut. arvutiskeemides. Aeglasemad, kui bipolaarsed, kuid võimaldavad suurema pakkimistiheduse, energitarve väiksem. 3.TRIGERID Triger on mäluelement, mis säilitab 1 biti informatsiooni. Triger on kahe stabiilse olekuga loogikalülitus (1 või 0). Trigeri olek vastab tema väljundsignaalile. Sõltuvalt sisendsignaalist säilitab triger endise oleku või muudab seda hüppeliselt. Trigeril tavaliselt 2 väljundit: otsene O ja invertne Õ. Tööpõhimõtte järgi jaotatakse trigerid seadesisenditega ehk SR- trigeriteks, loendussisenditega e. T-trigeriteks, andmesisenditega ehk D- trigeriteks ning universaalsisenditega e. JK-trigeriteks.

Arvutid i
429 allalaadimist
thumbnail
2
doc

Spikker eksamiks

e. Low TTL) - kasutatakse Soti Suvalise mooduliga e. kümnendsüsteemi arvuks jne. liigitatakse sõltuvalt sellest, kas dioodi. Pannakse transistori ette naaberkoodid on koodid, mis Üldjuhul on dekoodril nii mitu need programmeeritakse tehases diood, et transistor ei küllastuks, erinevad teineteisest ainult ühe sisendit n, kui mitu kohta on mälukiibi valmistaja poolt või kuna küllastunud transistori kahendjärgu poolest. Gray koodi sisendisse antaval kahendarvul. programmeerib neid kiibi sulgemine võtab kauem aega. puhul lülitub korraga ümber Maksimaalne väljundite arv kasutaja. TTL- st kiirem. ECL- (Emitter ainult 1 triger

Arvutid i
369 allalaadimist
thumbnail
42
doc

Arvutid 1 EXAM Vene keeles

) . . / . , . . ­ . . . . . A DC 0 B 1 2 3 E Käsuformaadid - 0, 1, 2, 3 ja 1,5 aadressiga arvutid. Andmeedastuse juhtimine(bus arbitation): süsteemid katkestustega ja ilma, prioriteedid. . , , , . . : . ­ (bus arbiter). . Summaator: järjestik, paralleel ja kiire ülekanne Summaatorid - , . : , . - () , . , , , : , -- ( ); Optilised mäluseadmed " " CD-ROM . 1,2 . , , . . . " , " CD-R. , . CD-. . - , . . CD-R, " , " CD-RW . DVD , . DVD , . . . - - , . MOD . . 1 , . "". . .

Arvutid i
45 allalaadimist
thumbnail
282
pdf

Mikroprotsessortehnika

kahendsõna bittide ja baitidega. Universaalarvutite riist- ja tarkvara arendavad tänapäeval vähesed tippspetsialistid, nende tööd kasutavad peaaegu kõik. Ja vaevalt et enamikule arvutioperaatoreist pakub lähemat huvi mikroprotsessorite ehitus Tehniliste seadmete ja tehnoloogiaprotsesside juhtimisel on riist- ja tarkvaraprobleemid sageli spetsiifilised ning üldlahendid puuduvad. Programmeerijalt eeldatakse riistvara ehituse tundmist. Tööstuslikku juhtimissüsteemi projekteeriv insener peab aga tundma mikrokontrollerite spetsiifilisi detaile, sisend-väljundliideste omadusi ja mälu ning protsessori töö iseärasusi. See on põhjus, miks automaatikasüsteemide insener vajab algteadmisi mikroprotsessortehnikast. Digitaal- ja mikroprotsessortehnika on kahtlemata üheks tänapäeva insenerihariduse nurgakiviks. Digitaaltehnika aluste omandamine annab üliõpilasele võimaluse paremini

Tehnikalugu
45 allalaadimist
thumbnail
50
doc

Exami materajal

Enamkasutatavaid kombinatsioonskeeme · välistav või (eXclusive-OR) Kui kaks signaali on võrdsed annab XOR element väljundsignaaliks 0 ja 1, siis kui signaalid ei ole võrdsed. Kasutatakse komparaatoris võrdlemaks kahte sisendsõna. 2 · multiplexor (Multiplexers) siinide e. magistraalide kommuteerimiseks kasutatakse multipleksorit. Multipleksor võimaldab valida ühe mitmest siinist ja ühendada selle oma väljund siiniga. Sõltuvalt dekoodri sisendkoodist suunatakse JA-elemendi kaudu üks sisendsignaalidest läbi VÕI-elemendi väljundisse. Dekoodri sisendkood on multpleksori juhtkoodiks. · summaator (Adder) Kahe biti liitmisel on sisenditeks a ja b ning ülekanne madalamast bitist kõrgemasse (carry out). Väljundiks on summa ning ülekanne omakorda kõrgemasse bitti (carry in). Summaator on moodustatav JA, VÕI ning EI-elementidest.

Arvutid
220 allalaadimist
thumbnail
38
doc

Riistvara

Näiteks kontoriarvuti jaoks ei ole reeglina vaja võimsa protsessoriga, eriti suure muutmäluga ja graafikatööks mõeldud spetsiaalsete omadustega arvutit. Samas on loetletud omadused hädavajalikud graafikadisaineri arvutil. Ainult riistvarakomponentidest ei piisa, et panna arvuti teostama mingit ülesannet. Riistvarakomponendid paneb koos funktsioneerima programm ehk käskude jada, mis ütleb arvutile kuidas mingit ülesannet täita. Programm, mille käske arvuti protsessor mõistab, on arvutikeeles ühtede ja nullide jada ja selle abil toimub ka suhtlus erinevate arvutikomponentide vahel. Iga üksik element selles nullide või ühtede ahelas on väikseim infoühik ehk bitt. Bittide jada moodustab binaarkoodi ehk kahendkoodi, mis on kogu arvutiteooria aluseks ja mille unepealt tundmine on igale IT spetsialistile oluline kirjaoskus. Konkreetsete sõnumite moodustamiseks on kahendkoodis kasutusel infoühik bait, mis omakorda koosneb kaheksast bitist

Arvutite riistvara alused
35 allalaadimist
thumbnail
56
docx

Arvutiarhitektuuri testid

loogikaahel? V: E 8) Joonisel kujutatud prioriteedikoodri sisendisse antakse signaal x1x2x3x4 = 0010. Milline on signaal (f1f2) koodri väljundis? V: 1 9) Millised allpoolnimetatud loogikalülituste kogumid on algebralises mõttes täielikud? V: {NING; VÕI; EI}, {NING-EI}, {EI-EGA} 3.test Järjendloogikaahelad 1) Millistel joonistel on kujutatud D-trigeri loogikaskeem? V: B, E 2) Millistel joonistel on kujutatud T-trigeri loogikaskeem? V: C 3) Joonisel kujutatud trigeri sisenditesse antakse alljärgnevad signaalid. a0 = 11111000 a1 = 01010101 Milline on signaal trigeri väljundis f0 kogu vaadeldava tsükli jooksul, kui selle väljundi seniseks väärtuseks oli 1? V: 11111100 4) Joonisel kujutatud trigeri sisenditesse antakse alljärgnevad signaalid. a0 = 11110011 a1 = 01010101 Milline on signaal trigeri väljundis f0 kogu vaadeldava tsükli jooksul, kui selle väljundi seniseks väärtuseks oli 1? V: 11111001

Infoharidus
126 allalaadimist
thumbnail
82
pdf

Funktsionaalsed signaaliprotsessorid

(Hardware Description Language) tasemel, saab kasutada CPLD olemasolevaid vahendeid optimiseerimiseks, paigalduseks ja marsruutimiseks. Kiire arendusprotsess. ISP (In System Programming). Arndusvahenditega luuakse nn. "bitstream", mis laetakse otse kas CPLD-sse või FPGA-sse. Näiteks arendussüsteem Eclipse, mis toetab suurimaid tootjaid Xilinx, Altera, Actel, AMD, Cypress ja Lattice. Miniatuursus. Väike kogumaksumus. Juba olemasolevat riistvara saab kasutada erinevate rakenduste jaoks Toomas Ruuben. TTÜ Raadio ja sidetehnika 34 instituut. 17 ECLIPSE Test-arendus süsteem. Sisaldab FPGA/CPLD-de andmebaasi Teostab "Scan Path Integrity Test (SPIT)" protseduuri JTAG (Joint Test Action Group )liidesele, et ühildavus seadmega oleks tagatud.

Funktsionaalsed...
47 allalaadimist
thumbnail
64
docx

Arvutiarhitektuuri eksami teooriaküsimused vastustega

Kordamisküsimused aines IAY0520 1. Mõisted arvuti, arvutisüsteem, arvuti riistvara iseloomustavad näitajad. Arvutit võib vaadelda kui süsteemi (arvutisüsteemi), mis töötleb programmimälus masinakeelset programmi ning teisendab andmemälus olevaid andmedi vastavalt sellele programmile. Arvuti riistavara iseloomustavad näitajad: Protsessor (keskprotsessor)  Aritmeetika-loogikaüksus  Juhtüksus Mälusüsteem  Mälussüsteemi hierarhiline korraldus  Infomahutavus  Kiirus  Maksumus Sisend-väljundsüsteem  Info läbilaskevõime (reaktsiooniaeg)  Struktuurne korraldus  S/V-süsteemi talitluse korraldus: - Programselt juhitav - Katkestuste süsteemi rakendav

Süsteemiteooria
35 allalaadimist
thumbnail
57
doc

Digitaaltehnika

....................................................................................................... 20 4.6 Komplementaarne MOP loogika.................................................................................. 20 5 Kombinatsioonseadmete süntees...................................................................................... 22 6 Trigerid............................................................................................................................... 26 6.1 Trigeri mõiste............................................................................................................... 26 6.2 Kasutatavad tähised.................................................................................................... 26 6.3 Trigerite liigid............................................................................................................... 26 6.4 Asünkroonne RS - triger...........................................................................

Digitaaltehnika
84 allalaadimist
thumbnail
72
pdf

Arvuti arhitektuur ja riistvara testide konspekt

kolmnurk jääb ette), väljundis c on 1 (sest tee c­sse ei lähe läbi  kolmnurga), väljundis b on 0 (sest kolmnurk), väljundis a on 1 (sest  kolmnurka pole)  ■ Kui x2 algväärtus on 0, siis samal põhimõttel tema väärtus väljundis a on  0, väljundis b on 0, väljundis c on 1 ja väljundis d on 1.  ■ Väljund, kus nii x1 kui ka x2 omasid väärtust 1, on c, kus seega tuleb  AND­tehte vastuseks 1, True  ■ Vastus: c  f. Millisel joonisel on kujutatud sellele (binaar)algebralisele tehtele vastav  loogikaahel?    ■ Vastus: d  g. Millisel joonisel on kujutatud sellele (binaar)algebralisele tehtele vastav  loogikaahel?  

Arvuti arhitektuur
118 allalaadimist
thumbnail
38
docx

Arvutiarhitektuurid eksam vastused TTÜ

Kordamisküsimused aines IAY0520 1. Mõisted arvuti, arvutisüsteem, arvuti riistvara iseloomustavad näitajad. Arvuti on tarkvarast ja riistvarast koosnev süsteem, mis on määratud info töötlemiseks. Arvutisüsteem on täies töökorras arvuti, kuhu kuuluvad arvuti, tarkvara ja välisseadmed, mis on vajalikud arvuti tööks. Arvuti riistvara iseloomustavad näitajad: protsessor – aritmeetika-loogikaüksus (funktsionaalsus; info töötluse kiirus ja täpsus); juhtüksus (paindlikkus; kiirus; keerukus); mälusüsteem – mälusüsteemi hierarhiline korraldus; mälude infomahutavus; mälude kiirus; maksumus; sisend-väljundsüsteem – infoläbilaskevõime (sh reaktsiooniaeg); S/V-süsteemi (SVS) struktuurne korraldus; S/V-süsteemi talitluse korraldus (programselt juhitav SVS; katkestuste süsteemi

Arvuti arhitektuur
138 allalaadimist
thumbnail
42
docx

Skeemitehnika I kordamisküsimused

(Postulaat – tõestuseta aktsepteeritav väide) X1  X 0  Z, X1  X 0  Z Kui siis (**) X1  X 0  Z, X1 X 0  Z Kui siis Tehete NING ja VÕI vastastikuse teisendamise omadus → duaalsuse printsiip. 6. Kombinatsioonloogika elemendid – multipleksor, demultipleksor. Kombinatsioonloogika on loogikalülituste skeem, mille väljund sõltub ainult süsteemi sisendite olekust antud hetkel. Multiplekser- lülitus või seade, mis võimaldab edastada mitut erinevat sisendsignaali ajaliselt järjestatun üht sideliini mööda Multiplekseri aadressisisend määrab, millise sisendi signaal antud hetkel väljundile pääseb. Kahekohalise aadressisisendi korral on võimalikud 2 2 erinevat aadressikoodi (00, 01, 10, 11) mis lubab 4 erineva sisendi olemasolu.

Skeemitehnika
26 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun