Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
Ega pea pole prügikast! Tõsta enda õppeedukust ja õpi targalt. Telli VIP ja lae alla päris inimeste tehtu õppematerjale LOE EDASI Sulge

Arvuhulgad loeng 1 - sarnased materjalid

ratsionaalarv, ratsionaalarvud, naturaalarvu, reaalarv, täisarvud, reaalarvu, naturaalarvud, reaalarvud, kompleksarvu, ratsionaalarvude, irratsionaalarv, kompleksarvud, irratsionaalarvud, lõpmatu, reaalarvude, kinnine, liitmise, paarisarv, arvuhulgad, murrud, arvteljel, ratsionaalarvudega, parajasti, imaginaararvud, vastand, lahutamise, jagamise
thumbnail
6
docx

Arvuhulgad

Oleme õppinud nelja põhitehet naturaalarvudega. · Liitmine · Korrutamine · Lahutamine · Jagamine NATURAALARVUDE HULK N 1. On järjestatud lõpmatu hulk,milles on vähim,kuid pole suurimat arvu. 2. On hulk, milles arvud järgnevad vahetult üksteisele ega kata kogu arvtelge. 3. On hulk, mis on kinnine liitmis- ja korrutamistehte suhtes. Ratsionaalarvud Ratsionaalarvuks nimetatakse arvu, mis avaldub jagatisena , kus a Ratsionaalarvud on need reaalarvud, mida saab esitada kahe täisarvu m ja n ( ) jagatisena nii, et kus on täisarvude hulk, on naturaalarvude hulk (v.a. null) ja on ratsionaalarvude hulk. Igal ratsionaalarvul on ka lõpmatu kümnendarendus ja see on alati perioodiline. Näiteks 2¾ = 11/4 = 2,7500000.... või 2,7499999... ja 0 = 0/1 = 0,00000... on ratsionaalarvud. Ratsionaalarvu vastandarvuks nimetatakse ratsionaalarvu ning pöördarvuks ratsionaalarvu .

Matemaatika
49 allalaadimist
thumbnail
4
docx

Matemaatika suulise arvestuse punktid

A B 5) Ühisosa ­ hulk, mille elementideks on kahe(või enama) hulga kõik ühised elemendid. AB 6) Loetelu ­ hulga elementide loetelu. 2. Juurde ja mahaarvutamise valem. 1) Elimineerimismeetod. 2) Nende esemete arvu leidmiseks, millel pole ühtegi nimetatud omadust, tuleb kogu arvust lahutada nende esemete arv, millel on paaritu arv omadus ja seejärel liita nende esemete arv, millel on paarisarv omadusi. 3. Naturaalarvud. 1) Omadused. a) a+b=b+a a, b liitmise kommutatiivsus(vahetuvusseadus) b) ab=ba a, b korrutamise kommutatiivsus c) a + (b + c) = (a + b) + c a, b, c liitmise assotsiatiivsus(ühenduvusseadus) d) a (b c) = (a b) c a, b, c korrutamise assotsiatiivsus

Matemaatika
6 allalaadimist
thumbnail
8
docx

Reaalarvud

Naturaalarvude hulka tähistatakse sümboliga N. Naturaalarvude hulga saame esitada kujul: N = {1;2;3;...;n-1;n;n+1;...} . 0 1 2 3 4 Naturaalarvude hulga omadusi. · Naturaalarvude hulk N on järjestatud lõpmatu hulk, milles on vähim, kuid pole suurim arvu. · Naturaalarvude hulk N on hulk, milles arvud järgnevad vahetult üksteisele ega kata kogu arvtelge. · Naturaalarvude hulk on kinnine liitmise ja korrutamise suhtes. (Kui kaks naturaalarvu liita või korrutada on tulemuseks alati naturaalarv.) · Naturaalarvude hulk ei ole kinnine lahutamise või jagamise suhtes. Naturaalarve, mis jaguvad 2-ga, nimetatakse paarisarvudeks, ülejäänuid paarituteks arvudeks. Ühest suuremat naturaalarvu , mis jagub vaid ühe ja iseendaga nimetatakse algarvuks, kõiki ülejäänud ühest suuremaid arve kordarvudeks. Algarvud on 2, 3, 5, 7, 11, 13, 17, 19 jne. (Hulk on lõpmatu.) Arvud 0 ja 1 ei ole algarvud ega kordarvud.

Matemaatika
91 allalaadimist
thumbnail
53
ppt

Reaalarvud ( slaidid )

Julia Lissovskaja matemaatika õpetaja Tartu Kutsehariduskeskus 2010 Arvuhulgad Naturaalarvude hulk Täisarvude hulk Ratsionaalarvude hulk Reaalarvude hulk Naturaalarvude hulk Naturaalarvud on arvud 0, 1, 2, 3, 4, 5,..., n-1, n, n+1,... Naturaalarvude hulka tähistatakse tähega N Naturaalarvude hulga omadused Naturaalarve saab kujutada punktidena arvkiirel Naturaalarve saab järjestada 0 1 2 3 4 1. a = b; 2. a > b; 3. a < b Naturaalarvude hulk on lõpmatu Naturaalarvude hulk on kinnine liitmise ja korrutamise tehete suhtes

Matemaatika
63 allalaadimist
thumbnail
22
pdf

Arvuhulgad ja arvuhulkade omadused

Matemaatika: Arvuhulgad ja arvuhulkade omadused Mairo Tammepõld 10ü Arvuhulgad ● Arvuhulgad jagunevad reaalarvudeks. ● Reaalarvud on naturaalarvud N=(1;2;3;4;...) täisarvud Z=(...;-4;-3;-2;-1;0;1;2;3;4;...) ratsionaalarvud Q=(...;-12;...;3;...;-4;...;-½;0) irratsionaalarvud J=(...;π;...;erinevad ruutjuured) Arvuhulgad ● Murdudega seoses oleme kasutanud veel järgmisi mõisteid : harilik murd - ½ (a-lugeja, b-nimetaja) lihtmurd - (a naturaalarvu ja lihtmurru summa (2½=2+½) kümnendmurd - murd, mis on kirjutatud koma abil (3,75=3+7/10+5/100 Jätk järgmisel slaidil

Matemaatika
35 allalaadimist
thumbnail
5
doc

Arvuhulgad

.......................................................................................... 2 Negatiivsete täisarvude hulk z ­......................................................................................... 2 Täisarvude hulk Z............................................................................................................... 2 Murdarvude hulk.................................................................................................................2 Ratsionaalarvude hulk Q.....................................................................................................2 Irratsionaalarvud................................................................................................................. 3 Reaalarvud R.......................................................................................................................3 Naturaalarvude hulk N N = {0; 1; 2; 3; 4; ...}. Väikseim = 0, suurim puudub. Naturaalarvude hulk on

Matemaatika
54 allalaadimist
thumbnail
10
doc

X klassi matemaatika lühikonspekt

X klassi matemaatika lühikonspekt (I periood) Arvuhulgad Naturaalarvudeks nimetatakse arve N={1; 2; 3; … ; n-1; n; n+1; …} Selles hulgas leidub esimene arv ja iga arvu korral sellele vahetult järgnev arv, kuid ei ole viimast arvu — niisugust naturaalarvu, mis oleks kõigist suurem. Naturaalarvude hulk on kinnine liitmise ja korrutamise suhtes, kuid mitte lahutamise ja jagamise suhtes. Liitmis- ja korrutamistehetel on hulgas N järgmised omadused: 1. Iga a, b  N korral a  b  b  a . Liitmis kommutatiivsus. 2. Iga a, b  N korral a  b  b  a . Korrutamise kommutatiivsus. 3. Iga a, b, c  N korral a   b  c    a  b   c . Liitmise assotsiatiivsus. 4

Matemaatika
27 allalaadimist
thumbnail
5
doc

X klassi matemaatika lühikonspekt

X klassi matemaatika lühikonspekt (I periood) Arvuhulgad Naturaalarvudeks nimetatakse arve N={1; 2; 3; … ; n-1; n; n+1; …} Selles hulgas leidub esimene arv ja iga arvu korral sellele vahetult järgnev arv, kuid ei ole viimast arvu — niisugust naturaalarvu, mis oleks kõigist suurem. Naturaalarvude hulk on kinnine liitmise ja korrutamise suhtes, kuid mitte lahutamise ja jagamise suhtes. Liitmis- ja korrutamistehetel on hulgas N järgmised omadused: 1. Iga a, b  N korral a  b  b  a . Liitmis kommutatiivsus. 2. Iga a, b  N korral a  b  b  a . Korrutamise kommutatiivsus. 3. Iga a, b, c  N korral a   b  c    a  b   c . Liitmise assotsiatiivsus. 4

Matemaatika
113 allalaadimist
thumbnail
8
pdf

Kompleksarvud gümnaasiumiõpikus

Arvu a nimetatakse kompleksarvu a + ib reaalosaks ja arvu bi selle imaginaarosaks. KOMPLEKSARVUD Kui a = 0, siis on tegemist imaginaararvuga bi, kui b = 0, siis saame arvu a + 0·i, mis on reaalarv a. Kui a = b = 0, siis siis saame tulemuseks arvu 0. KOMPLEKSARVU MÕISTE. TEHTED KOMPLEKSARVUDEGA Kaks kompleksarvu on omavahel võrdsed parajasti siis, kui nende reaalosad ja 1. Kompleksarvu mõiste imaginaarosad on vastavalt võrdsed:

Matemaatika
16 allalaadimist
thumbnail
18
docx

Elementaarmatemaatika 1. teooria

3. Arvuhulga kinnisus tehte suhtes- Arvuhulka nimetatakse kinniseks mingi tehte suhtes, kui selle hulga iga kahe arvu korral kuulub alati samasse hulka ka vaadeldava tehte tulemus 4. Arvuhulga pidevus- Kui arvuhulga igale arvule vastab üks kindel arvtelje punkt ja vastupidi, igale arvtelje punktile vastab üks kindel selle arvuhulga arv, siis öeldakse, et see arvuhulk on pidev 5. Vastandarv- Naturaalarvu n vastandarvuks nimetatakse sellist arvu -n, mis rahuldab võrdust n + ( -n ) = 0. 6. Täisarvude hulk- · Naturaalarvude hulk on täisarvude hulga osahulk · Z = {....-2; -1; 0; 1; 2; ......} · Jaguneb naturaalarvudeks ja negatiivseteks arvudeks a 7. b Murdarvud- Kui täisarv a jagub täisarvuga b, siis on jagatis täisarv, kui aga ei jagu, siis

Elementaarmatemaatika 1
63 allalaadimist
thumbnail
12
pdf

Matemaatika eksami teooria 10. klass

Matemaatika eksami teooria Reaalarvud 1.1. Naturaal-, täis- ja ratsionaalarvud · Naturaalarvude hulk N (ainult positiivsed täisarvud) · Naturaalarvu n vastandarv -n defineeritakse selliselt, et n+(-n)=0 · Naturaalarvud koos oma vastandarvudega moodustavad täisarvude hulga Z (jaguneb pos ja neg) · Iga kahe täisarvu vahe on alati täisarv · Kui arv a ei jagu arv b-ga, siis on tegemist murdarvuga. Kõik täisarvud ja positiivsed ning negatiivsed murdarvud moodustavad kokku ratsionaalarvude hulga Q. Ratsionaalarv on arv, mis avaldub jagatisena a/b, kus a Z, b Z ja b 0. · Iga ratsionaalarv avaldub lõpmatu perioodilise kümnendmurruna. 1.2 Irratsionaal- ja reaalarvud · Arv, mis avaldub lõpmatu mitteperioodilise kümnendmurruna, on irratsionaalarv. · Arvutamisel piirdutakse ligikaudsete väärtustega e lähenditega, nt pii=3,14

Matemaatika
79 allalaadimist
thumbnail
6
doc

Reaalarvud. Võrrandid

MA1 - Reaalarvud. Võrrandid 1. Teemad Arvuhulgad N, Z, Q ja R, nende omadused. Reaalarvude piirkonnad arvteljel. Reaalarvu absoluutväärtus. Protsentülesanded. Astme mõiste üldistamine: täisarvulise ja ratsionaalarvulise astendajaga aste. N- es juur. Tehted astmete ja juurtega. Ratsionaal- ja irratsionaalavaldiste lihtsustamine. Irratsionaalsusest vabanemine. Lineaar-, ruut-, murd- ja juurvõrrandid. Võrrandite koostamine. Lihtsamate tekstülesannete lahendamine. 2. Tarkuseterad 2.1 Arvuhulgad Loendamisel kasutatavad arvud Arv 0

Matemaatika
297 allalaadimist
thumbnail
100
pdf

MATEMAATIKA TÄIENDUSÕPE

..…… 35 3.20 Näited võrratuste ja võrratussüsteemide lahendamisest …………..… 35 3.21 Logaritmid ………………………………………………………..…. 41 3.22 Summa märk ………………………………………………….……. 44 3.23 Ülesanded aritmeetikast ja algebrast …………...………………..….. 46 1 1. ARVUHULGAD Positiivsed täisarvud ehk naturaalarvud tekkisid vajadusest loendada esemeid. Kõik naturaalarvud moodustavad naturaalarvude hulga ℕ = {0; 1; 2; 3; 4; ...} . Naturaalarvude hulk on kinnine liitmise ja korrutamise suhtes. Naturaalarvude hulk muutub kinniseks lahutamise suhtes, kui teda täiendada arvude 1, 2, 3, ... vastandarvudega -1, -2, -3, ... . Negatiivsed ja positiivsed täisarvud ning arv 0 moodustavad täisarvude hulga ℤ = {±1; ± 2; ± 3; ...} . Täisarvude hulk on kinnine liitmise, lahutamise ja korrutamise suhtes.

Matemaatika
75 allalaadimist
thumbnail
40
doc

Keskkooli matemaatika raudvara

...................................................................................5 Negatiivsete täisarvude hulk z ­...........................................................................................5 Täisarvude hulk Z.................................................................................................................5 Murdarvude hulk.................................................................................................................. 5 Ratsionaalarvude hulk Q...................................................................................................... 5 Irratsionaalarvud...................................................................................................................6 Reaalarvud R........................................................................................................................ 6 * Rooma numbrid..........................................................................................

Matemaatika
1453 allalaadimist
thumbnail
22
docx

Kõrgem matemaatika 1 kordamisküsimused 2017/2018

nullist erinevat elementi. Kronecker-Capelli teoreem - Lineaarne võrrndisüsteem on lahenduv parajasti siis, kui süsteemimaatriksi ja laiendatud maatriksi astakud on võrdsed, so rank( A) = rank( AL). 10.Lineaarse võrrandisüsteemi definitsioon. Lineaarvõrrandite süsteemi esimest, teist ja kolmandat tüüpi elementaarteisenduseks. Gaussi meetodi sisu. 11.Kompleksarvu mõiste, imaginaarühik, kompleksarvu reaalosa ja imaginaarosa, kompleksarvude võrdsus, kaaskompleksarv. Kompleksarvude liitmise, korrutamise ja jagamise valemid. Kompleksarvu moodul, argument ja trigonomeetriline kuju. Kompleksarvu geomeetriline tõlgendus, kaaskompleksarvude ja kompleksarvude summa geomeetriline tõlgendus. Trigonomeetrilisel kujul antud kompleksarvude korrutamise, jagamise, astendamise valemid. Kompleksarvuks z nimetatakse avaldist z = a + bi (1.3) kus a ja b

Kõrgem matemaatika
135 allalaadimist
thumbnail
89
docx

Matemaatiline maailmapilt

Näide: x, x3 - 27 = 0 tähendab, et leidub x, mille korral x3 - 27 = 0. Üldisel kujul: ,,Leidub x, mille korral kehtib P(x)" ehk ,,vähemalt ühel objektil x on omadus P(x)" ,,Leiduma" = leidub vähemalt üks objekt (s.t võib leiduda ka mitu), mis rahuldab antud tingimust. Väljendit ,,leidub täpselt üks" tähistatakse tavaliselt sümboliga !. Näiteks, !x , 2x - 4 = 0. Näide: x , x2 + 1 > 0 tähendab, et iga reaalarvu x korral on x2 + 1 suurem nullist. Kui lauses kasutatakse üldisuse kvantorit, siis selle lausega väidetakse midagi kõigi antud liiki objektide kohta ja seetõttu peab neid väiteid tõestama ka üldkujul. Seevastu lause ümberlükkeks piisab ainult ühest kontranäitest. Näide: Eitame lauset: ,,Kõik naturaalarvud on algarvud." 1. Antud juhul P(x) = ,,x on algarv" 2. ¬(x , x on algarv) 3. x , ¬(x on algarv) 4. x , x ei ole algarv

Matemaatika
49 allalaadimist
thumbnail
18
pdf

8. klassi raudvara: PTK 6

olemas, aga ruutjuur negatiivse arvu ruudust võrdub selle vastandarvuga 3.Ratsionaalarvud - kahe täisarvu jagatis vaata kujul (q 0); tähis Q; Q=täisarvud+ Ül.1279,1289 Esitada kahe täisarvu jagatisena. positiivsed ja negatiivsed murdarvud; -8=-8:1 0,0082=82:10 000 osahulgad: naturaalarvude hulk ja - =- täisarvude hulk; siia kuuluvad murdarvud on kas lõplikud või lõpmatud perioodilised kümnendmurrud; iga ratsionaalarv avaldub Leida, kumb on suurem. lõpmatu perioodilise kümnendmurruna < + LOE 5< <6 ehk 5,... NB moodustavad reaalarvude hulga 3< <4+4< <5 ehk 7,... osahulga 4.Irratsionaalarvud - saab esitada lõpmatu Ül.1283 mitteperioodiline kümnendmurruna; Ruutjuure ligikaudne väärtus leida tekivad näiteks , , ; 6.klass: proovimise teel ümardatuna ühelisteni.

Matemaatika
64 allalaadimist
thumbnail
1
docx

Lineaari eksami materjal

väiksem indeks asetseb suurema indeksi ees, siis nad moodustavad loomuliku järjestuse. Vastasel juhul räägitalse, et kompleksarvudeks. Arve kujul a+bi, kus a ja b on mistahes reaalarvud ja i imaginaarühik, 2. =0 £(*a)=£(a) lineaarkujutuse tulemusena viidavad kanoonilisele kujule. Seejuures ilmneb,

Lineaaralgebra
253 allalaadimist
thumbnail
15
doc

Mõisted matemaatikas

Ülesanne 1 Aksioom (kreeka keeles axima 'see, mis on vääriline') tähendab üldkeeles väidet, mille tõesuses pole kahtlust. Algarvuks nimetatakse ühest suuremat naturaalarvu, mis jagub vaid arvuga 1 ja iseendaga. Algarvude hulk on lõpmatu. Sajast väiksemad algarvud ((100) = 25) on 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 ja 97. Kaksikuteks nimetatakse selliseid algarve, mille vahe on 2, näiteks 101 ja 103 või 1 000 000 007 ja 1 000 000 009. Ei ole teada, kas kaksikuid on lõpmata palju. Aritmeetiliseks keskmiseks nimetatakse arvu, mis saadakse antud arvude summa jagamisel liidetavate arvuga. Näide 1.

Matemaatika
63 allalaadimist
thumbnail
104
pdf

Konspekt

I. Determinandid 1 Determinandi m~ oiste 1.1 Idee selgitus Algul defineerime esimest j¨ arku determinandi, siis esimest j¨arku determinandi abil teist j¨ arku determinandi, seej¨arel teist j¨arku determinandi abil kolmandat j¨ arku detereminandi jne, n-j¨arku determinandi defineerime (n - 1)-j¨arku determinandi kaudu. Sel- list defineerimisviisi nimetatakse induktiivseks ja vastavat objekti induktiivseks konstruktsiooniks. Eelnevalt on soovitatav tutvuda maatriksi m~oistega (II.1.1). Kooloniga v~ordus A := B t¨ahendab j¨argnevas, et A on defineeri- tud B kaudu. Seda v~ordust kasutame ka samav¨ a¨arsete t¨ ahistuste sissetoomiseks. 1.2 Esimest j¨ arku determinant Arvu a R determinandi |a| ehk esimest j¨ arku determinandi de- fineerime valemiga |a| := det a := a. 1.3 N¨ aide | - 5| = -5

Lineaaralgebra
511 allalaadimist
thumbnail
156
pdf

Kõrgem matemaatika

MTMM.00.340 Kõrgem matemaatika 1 2016 KÄRBITUD loengukonspekt Marek Kolk ii Sisukord 0 Tähistused. Reaalarvud 1 0.1 Tähistused . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0.2 Kreeka tähestik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 0.3 Reaalarvud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 0.4 Summa sümbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1 Maatriksid ja determinandid 7 1.1 Maatriksi mõiste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2 Tehted maatriksitega . . . . . . . . . . . . .

Kõrgem matemaatika
94 allalaadimist
thumbnail
177
pdf

ÜHE MUUTUJA MATEMAATILINE ANALÜÜS

LTMS.00.022 ÜHE MUUTUJA MATEMAATILINE ANALÜÜS Loengukursus Tartu Ülikooli loodus- ja täppisteaduste valdkonna üliõpilastele 2019./2020. õppeaasta Toivo Leiger Joonised: Ksenia Niglas Pisitäiendused 2016–20: Märt Põldvere, Natalia Saealle, Indrek Zolk, Urve Kangro 2 Sisukord 1 Reaalarvud 6 1.1 Järjestatud korpused . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1.1 Korpuse aksioomid . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1.2 Järjestatud korpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.1

Algebra I
8 allalaadimist
thumbnail
9
doc

Lineaaralgebra

Lineaaralgebra I kontrolltöö teooriaküsimused 1. Kompleksarvu mõiste, imaginaarühik, kaaskompleksarv, kompleksarvude võrdsus ja nulliga võrdumise tingimus. Kompleksarvu moodul, argument ja trigonomeetriline kuju. Kompleksarvuks z nimetatakse avaldist z = a + bi , (1) kus a ja b on reaalarvud ja i on niinimetatud imaginaarühik, mis on määratud võrdustega i = -1 või i 2 = -1 ; Kaht kompleksarvu z = a + bi ja z = a - bi , mis erinevad ainult imaginaarosa märgi poolest, nimetatakse kaaskompleksarvudeks. Kokkuleppe põhjal 1) kaht kompleksarvu z1 = a1 + b1i ja z2 = a2 + b2i loetakse võrdseteks ( z1 = z2 ) , kui a1 = a2 ja b1 = b2 , s.t

Lineaaralgebra
920 allalaadimist
thumbnail
22
docx

Matemaatika analüüs I konspekt

1 −5 1 1 Nt 4 ; 1 ; 3 =0,(3); 7 . Lõpmatud mitteperioodilised kümnendmurrud moodustavad irratsionaalarvude hulga. Nt. π; e; √2 ; √3 . Ratsionaalarvude ja irratsionaal arvude hulgad moodustavad kokku reaalarvude hulga. Arvtelg ___ lõpmatu sirge, millel on määratud suund, 0-punkt ja pikkusühik. Igale reaalarvule vastab arvteljel üks punkt ja vastupidi. Reaalarvude hulgal on selline omadus, et iga kahe reaalarvu vahel on veel ratsionaalarve ja irratsionaalarve. Reaalarvu absoluutväärtus. Olgu arv x. Selle arvu absoluutväärtus moodul I x I on defineeritud järgmiselt: I x I = x, kui x ≥ 0 I x I = -x, kui x < 0 Nt. I 3 I = 3 ; I -5 I = 5 ; I 0 I = 0 Arvu absoluutväärtus muudab arvteljel selle arvu kaugust 0-punktist. Muutuv suurus ja jääv suurus Muutuv suurus – tal on mitmesugused väärtused. Tähised nt. x, y, z, … (tähestiku lõpp)

Matemaatika analüüs i
24 allalaadimist
thumbnail
32
doc

Matemaatika I küsimused ja mõisted vastustega

........................................... 4 20. Diferentseeruv funktsioon - kui funktsioonil y = f(x) on tuletis punktis x = x0, siis ütleme, et funktsioon on diferentseeruv punktis x0. Kui funktsioon on aga diferentseeruv mingi piirkonna igas punktis, öeldakse, et funktsioon on diferentseeruv selles piirkonnas. ..................................... 4 1. Arvuhulgad: naturaal-, täis-, ratsionaal-, reaal- ja kompleksarvud. Nende omadused. ...............6 2. Reaalarvu absoluutväärtus, absoluutväärtuse omadused. ............................................................6 Absoluutväärtuse omadused............................................................................................................. 6 3. Muutuvad ja jäävad suurused, tuua näiteid. .................................................................................6 4. Funktsiooni mõiste, funktsiooni esitusviisid. .....................................................................

Matemaatika
118 allalaadimist
thumbnail
4
odt

Kompleksarvud

Kompleksarvud Kompleksarvu mõiste: Arve kujul a+ib, kus a ja b on reaalarvud ja i on imaginaarühik, nimetatakse kompleksarvudeks. Kõikide kompleksarvude hulka tähistatakse sümboliga C Kaks kompleksarvu on võrdsed parajasti siis, kui nende imaginaarosad ja reaalosad on vastavalt võrdsed a + bi = c + di <=> a = c ja b = d Kompleksarve a + bi ja a - bi nimetatakse kaaskompleksarvudeks. Näiteks 5+2i ja 5-2i. Kompleksarvu a + bi vastandarvuks nimetatakse kompleksarvu -a ­ bi. Näiteks 7+5i ja -7- 5i. Tehted kompleksarvudega: (a + bi) + (c + di) = (a + c) + (b + d)i (5 -3i)+(2 + 7i) = (5+2) + (-3+7)i = 7 + 4i

Matemaatika
110 allalaadimist
thumbnail
4
doc

Matemaatika mõisted

1. Absoluutväärtus ­ reaalarvuga x määratud mittenegatiivne reaalarv 2. Abstsisstelg ­ x ­ telg 3. Aksioom ­ lause, mida loetakse õigeks ilma põhjenduseta. Aksioomid võetakse aluseks teiste väidete põhjendamisel. 4. Algarv ­ Ühest suurem naturaalarv, mis jagub vaid ühe ja iseendaga. 5. Algebraline murd ­ murd, mille lugejaks ja / või nimetajaks on muutujaid sisaldav avaldis. 6. Algebraline ruutjuur ­ arv, mille ruut on antud arv a. 7. Algkoordinaat ­ antud sirge ja ordinaattelje lõikepunkti ordinaat. 8

Matemaatika
146 allalaadimist
thumbnail
24
rtf

Lineaaralgebra eksam

1. Kompleksarv kui reaalarvude paar. Tehted kompleksarvudega. Tehete omadused. Kompleksarvu algebraline kuju. Tuletatavad tehted ja nende omadused. Kompleksarvuks nimetatakse reaalarvude paari (x,y). C = {(x;y) | x, y R} Tehted kompleksarvudega: z1 = (x1; y1) C; z2 = (x2; y2) C 1. liitmine: z1 + z2 = (x1 + x2; y1 + y2) 2. korrutamine: z1 * z2 = (x1x2 - y1y2; x1y2 + x2y1) Kompleksarvudega tehete omadused 1. liitmine on kommutatiivne, st z1 + z2 = z2 + z1 z1, z2 C korral 2. liitmine on assotsiatiivne, st (z1 + z2) + z3 = z1 + (z2 + z3) z1, z2, z3 C korral 3

Lineaaralgebra
199 allalaadimist
thumbnail
26
doc

Matemaatiline analüüs I - kordamine eksamiks

MATEMAATILINE ANALÜÜS I § 1 REAALARVUD JA FUNKTSIOONID 1. Reaalarvu mõiste Tähistame sümboliga N kõigi naturaalarvude hulga, st N = {1, 2, 3,...} ja sümboliga Z kõigi täisarvude hulga, st Z = {...,­3,­2,­1, 0, 1, 2, 3,...}. p Ratsionaalarvudeks nimetatakse arve kujul q , kus p ja q on täisarvud, q 0. Kõigi ratsionaalarvude hulga tähistame sümboliga Q. Ratsionaalarvudeks on parajasti need arvud, mis on esitatavad lõplike või lõpmatute perioodiliste kümnendmurdudena. Arve, mis on esitatavad lõpmatute mitteperioodiliste kümnendmurdudena, nimetatakse irratsionaalarvudeks. Kõik ratsionaalarvud ja irratsionaalarvud moodustavad reaalarvude hulga. Kõigi reaalarvude hulga tähistame sümboliga R. Iga lõplikku kümnendmurdu a= , 12 ...n saab esitada lõpmatu kümnendmurruna

Matemaatiline analüüs i
687 allalaadimist
thumbnail
76
pdf

Kordamine kompleksarv

arku determinandid. Crameri valemid. Kompl Kompleksarvu m˜oiste Arvhulkade vahel valitseb seos N ⊂ Z ⊂ Q ⊂ R ⊂ ? ⊂ ?? . . . imaginaar¨ uhik: i2 = −1 Arvu kujul z = a + b · i, kus a, b ∈ R ja i on imaginaar¨ uhik, nimetatakse kompleksarvuks. Arvu a nimetatakse kompleksarvu reaalosaks ja t¨ahistatakse Re(z) = a, arvu b nimetatakse imaginaarosaks ja t¨ahistatakse Im(z) = b. Teist ja kolmandat j¨ arku determinandid. Crameri valemid. Kompl Kompleksarvu m˜oiste Arvhulkade vahel valitseb seos N ⊂ Z ⊂ Q ⊂ R ⊂ ? ⊂ ?? . . . imaginaar¨ uhik: i2 = −1

Matemaatika
6 allalaadimist
thumbnail
7
rtf

Aritmeetika ja algebra

kus 1 on naturaalarvude hulk alates arvust 1: 1 = { 1; 2; 3; 4; ...} . Astendaja 0 defineeritakse võrdusega a = 1 , milles a 0 . 0 Negatiivse astendaja korral sisaldab astendamine ka jagamise: 1 a -n = n a , kui ja n või kui a > 0 ja n , kus on täisarvude hulk ja on ratsionaalarvude hulk: a = , kus a , b ja b 0 = { ±1; ± 2; ± 3; ...} b . , Murrulise astendaja korral sisaldab astendamine juurimise: m a = n a m , kui a > 0, m ja n 2 , n kus 2 on naturaalarvude hulk alates arvust 2:

Matemaatika
212 allalaadimist
thumbnail
16
docx

J. Kurvitsa teooria vastused

Hulkade A ja B ühisosa tähistatakse * Hulkade A ja B vaheks nimetatakse kõigi selliste elementide hulka, mis kuuluvad hulka A, kuid ei kuulu hulka B. Hulkade A ja B vahet tähistatakse AB, * Hulkade A ja B sümmeetriliseks vaheks nimetatakse kõigi selliste elementide hulka, mis kuuluvad hulka A, kuid mitte hulka B, või kuuluvad hulka B, kuid mitte hulka A. Hulkade A ja B sümmeetrilist vahet tähistatakse Arvuhulgad: N = - naturaalarvude hulk). Z = täisarvude hulk. Q = ratsionaalarvude hulk. I = irratsionaalarvude hulk. R = reaalarvude hulk. C = kompleksarvude hulk. Teoreem. Ei leidu ratsionaalarvu, mille ruut on 2 tõestada. Oletame vastupidiselt, et sellinne arv on olemas ja tähistame sümboliga . Järelikult võib ta olla mingi taandumatu murd kujul , kus a ja b on ühistegurita. = ehk 2 = = . Et arvud a ja b on ühistegurita arvud (neil puuduvad ühised algtegurid ) ja arvu ruututõstmine ei lisa uusi algtegureid, siis on ka murd taandumatu ega saa võrduda arvuga 2.

Matemaatiline analüüs
195 allalaadimist
thumbnail
22
doc

Matemaatiline analüüs I - kordamine eksamiks (ainekava järgi koostatud konspekt)

Ainekava eksamiks ,, Matemaatiline analüüs I " 2007 ­ 2008 kevadsemester 1. Naturaalarvud, täisarvud, ratsionaalarvud, irratsionaalarvud, reaalarvud. Naturaalarvud ­ arvud, mis saadakse loendamise teel, tähistatakse: IN (1, 2, 3, 4, 5, 6, ..., ) Täisarvud ­ kõik naturaalarvud ja nende vastandarvud ning lisaks 0, tähistatakse Z m Ratsionaalarvud ­ on sellised reaalarvud, mida saab esitada kahe täisarvu m ja n jagatisena nii et n n 0

Matemaatiline analüüs i
776 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun