Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse Registreeri konto

ARVU ABSOLUUTVÄÄRTUSE OMADUSED (0)

1 Hindamata
Punktid
Vasakule Paremale
ARVU ABSOLUUTVÄÄRTUSE OMADUSED #1 ARVU ABSOLUUTVÄÄRTUSE OMADUSED #2 ARVU ABSOLUUTVÄÄRTUSE OMADUSED #3 ARVU ABSOLUUTVÄÄRTUSE OMADUSED #4 ARVU ABSOLUUTVÄÄRTUSE OMADUSED #5
Punktid Tasuta Faili alla laadimine on tasuta
Leheküljed ~ 5 lehte Lehekülgede arv dokumendis
Aeg2015-10-07 Kuupäev, millal dokument üles laeti
Allalaadimisi 5 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor olivialaul Õppematerjali autor

Märksõnad

Sarnased õppematerjalid

thumbnail
37
docx

Matemaatiline analüüs l.

järgnev. Muutuva suuruse piirväärtuse üldine definitsioon on järgmine: Olgu x järjestatud muutuv suurus. Arvu a nimetatakse muutuva suuruse x piirväärtuseks, kui iga kuitahes väikese positiivse arvu korral saab näidata sellist suuruse x väärtust, millest alates kõik järgnevad muutuva suuruse väärtused kuuluvad arvu a ümbrusesse (a - , a + ), st rahuldavad võrratust |x - a| < . Kui arv a on suuruse x piirväärtus, siis öeldakse, et suurus x läheneb arvule a ehk koondub arvuks a ja kirjutatakse x a või lim x = a . Muutuv suurus x läheneb vasakult arvule a, kui iga kuitahes väikese positiivse arvu korral saab näidata sellist suuruse x väärtust, millest alates kõik järgnevad muutuva suuruse väärtused kuuluvad poollõiku (a - , a]. Sellisel juhul kirjutatakse x a- Muutuv suurus x läheneb paremalt arvule a, kui iga kuitahes väikese positiivse arvu korral saab

Matemaatiline analüüs
thumbnail
156
pdf

Kõrgem matemaatika

. . . . . . . . . . . . . . . . 29 3.5 Põhilised elementaarfunktsioonid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 SISUKORD 3.6 Elementaarfunktsioonid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.7 Jadad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4 Funktsiooni piirväärtus ja pidevus 37 4.1 Jada piirväärtus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.2 Funktsiooni piirväärtuse mõiste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.3 Ühepoolsed piirväärtused . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.4 Funktsiooni piirväärtuse omadused . . . . . . . . .

Kõrgem matemaatika
thumbnail
32
doc

Matemaatika I küsimused ja mõisted vastustega

monotoonsed funktsioonid, tõkestatud funktsioonid). Tuua näiteid. .............................................. 7 6. Elementaarsed põhifunktsioonid, nende määramispiirkonnad, põhiomadused ja graafikud. .....7 7. Liitfunktsiooni mõiste, liitfunktsiooni määramispiirkond. Tuua näiteid. ....................................7 8. Pöördfunktsiooni mõiste; pöördfunktsiooni määramis- ja muutumispiirkond. Tuua näiteid. .....7 9. Muutuva suuruse piirväärtus, tõkestamatult kasvav ja tõkestamatult kahanev suurus. ...............8 10. Funktsiooni piirväärtus. Funktsiooni vasak- ja parempoolne piirväärtus. .................................9 11. Tõkestamatult kasvav funktsioon, tõkestamatult vähenev funktsioon. ................................... 10 12. Funktsiooni piirväärtuse aritmeetiliste tehetega seotud omadused. ........................................ 10 13

Matemaatika
thumbnail
13
docx

Matemaatiline analüüs I KT

elemendi kohta on võimalik öelda, kumb neist on eelnev ja kumb järgnev. MUUTUVA SUURUSE PIIRVÄÄRTUSE DEFINITSIOON ­ Olgu x järjestatud muutuv suurus. Arvu a nimetatakse muutuva suuruse x piirväärtuseks, kui iga kuitahes väikese positiivse arvu korral saab näidata sellist suuruse x väärtust, millest alates kõik järgnevad muutuva suuruse väärtused kuuluvad arvu a ümbrusse (a - , a + ), st rahuldavad võrratust |x ­ a| < . Kui arv a on suuruse x piirväärtus, siis öeldakse, et suurus x läheneb arvule a ehk koondub arvuks a ja kirjutatakse või . MUUTUVA SUURUSE ÜHEPOOLSETE PIIRPROTSESSIDE DEFINITSIOONID ­ Ühepoolsete piirprotsesside definitsioonid saame üldisest piirväärtuse definitsioonist, kui me seal esineva ümbruse (a - , a + ) kitsendame kas vasakpoolseks või parempoolseks ümbruseks (a - , a] või [a,a + ). Muutuv suurus x läheneb vasakult arvule a, kui iga kuitahes väikese positiivse arvu

Matemaatiline analüüs
thumbnail
39
pdf

Matemaatiline analüüs I konspekt -Tõkestatud hulgad

Areakootangens y = arcth x X = (- ,1) (1, ) Y = (- ,0 ) (0, ) y = arsh x y = arch x y = arth x y = arcth x 6 Kordamine matemaatilise analüüsi I eksamiks matemaatika-informaatika teaduskonnas 04/05 õ.a II PIIRVÄÄRTUS Piirväärtuse mõiste Jada piirväärtus Jada ( x n ) võib vaadelda kui funktsioni f , mis on antud valemiga f (n ) = x n , kus n N , s.o. kui funktsiooni f , mille määramispiirkond X = N. 1. Jada (lõplik) piirväärtus Definitsioon: Arvu a nimetatakse jada ( x n ) piirväärtuseks, kui iga arvu > 0 korral leidub selline arv N = N ( ) , et kehtib võrratus x n - a < , alati kui n > N , ja kirjutatakse lim x n = a

Matemaatiline analüüs I
thumbnail
16
docx

J. Kurvitsa teooria vastused

esitatakse see järgmiselt: x = x (t ) t T y = x(t ) x = t +1 Näiteks: y = t + 2 Polaarkoordinaadid, üleminek parameetrilisele esitusele. Funktsiooni f saab esitada ka polaarkoordinaatides valemiga r = r(), T, mis annab funktsiooni graafiku punktid (x,y) polaarkoordinaatides (r, ). Esituselt polaarkoordinaatides saab minna üle parameetrilisele esitusele kasutades järgmiseid valemeid: Näiteks: 8. Jada (näide). Jada piirväärtus. Näiteks tõestada, et jada xn= piirväärtus on . Alates millisest n väärtusest suurus - xn ei ületa = 0,01 ? Jada. Definitsioon nimetatakse funktsiooni, mille määramispiirkonnaks on naturaalarvude hulk N. Näide: n = (1, , , ...) Jada piirväärtus. Arvu a nimetatakse reaalarvude jada x1, x2, x3, ... piirväärtuseks, kui iga kuitahes vaikese positiivse arvu korral saab näidata sellist jada elementi xn , millest alates

Matemaatiline analüüs
thumbnail
25
doc

MATEMAATILINE ANALÜÜS I TEOORIA KONTROLLTÖÖ Küsimused vastustega

järgneb elemendile xi. Muutuva suuruse piirväärtuse definitsioon. Muutuva suuruse piirväärtuse üldine definitsioon on järgmine: Olgu x järjestatud muutuv suurus. Arvu a nimetatakse muutuva suuruse x piirväärtuseks, kui iga kuitahes väikese positiivse arvu ε korral saab näidata sellist suuruse x väärtust, millest alates kõik järgnevad muutuva suuruse väärtused kuuluvad arvu a ümbrusesse (a − ε, a + ε), st rahuldavad võrratust |x − a| < ε. Kui arv a on suuruse x piirväärtus, siis öeldakse, et suurus x läheneb arvule a ehk koondub arvuks a ja kirjutatakse x → a või lim x = a . Piirväärtuse üldises definitsioonis ei ole fikseeritud kuidas (vasakult, paremalt või mõlemalt poolt) muutuja x lähenemine arvule a toimub. Seega on piirprotsessi x → a erijuhtudeks sellised piirprotsessid, kus x läheneb arvule a ainult vasakult või paremalt. Muutuva suuruse ühepoolsete piirprotsesside definitsioonid.

Matemaatiline analüüs 1
thumbnail
23
doc

Matemaatiline analüüs KT1 vastused

elemendile xi. Muutuva suuruse piirväärtuse definitsioon. Muutuva suuruse piirväärtuse üldine definitsioon on järgmine: Olgu x järjestatud muutuv suurus. Arvu a nimetatakse muutuva suuruse x piirväärtuseks, kui iga kuitahes väikese positiivse arvu korral saab näidata sellist suuruse x väärtust, millest alates kõik järgnevad muutuva suuruse väärtused kuuluvad arvu a ümbrusesse (a - , a + ), st rahuldavad võrratust |x - a| < . Kui arv a on suuruse x piirväärtus, siis öeldakse, et suurus x läheneb arvule a ehk koondub arvuks a ja kirjutatakse x a või lim x = a . Piirväärtuse üldises definitsioonis ei ole fikseeritud kuidas (vasakult, paremalt või mõlemalt poolt) muutuja x lähenemine arvule a toimub. Seega on piirprotsessi x a erijuhtudeks sellised piirprotsessid, kus x läheneb arvule a ainult vasakult või paremalt. Muutuva suuruse ühepoolsete piirprotsesside definitsioonid.

Matemaatiline analüüs I




Meedia

Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun